【題目】如圖,在ABC中,AB=ACAD平分∠BAC,DEAB,DFACE、F為垂足,則下列四個結(jié)論:①∠DEF=DFE;②AE=AF;③DA平分∠EDF;④EF垂直平分AD.其中正確的序號是____________.

【答案】①②③

【解析】試題解析:∵AB=AC,

∴△ABC是等腰三角形,∠B=C.

AD平分∠BAC,

BD=CD,

DEABEDFACF,

DE=DF,

∴∠DEF=DFE,故①正確;

RtADERtADF中,

RtADERtADF(HL),

AE=AFADE=ADF,故②③正確;

AE=AF,AD平分∠BAC

AD垂直平分EF,故④錯誤;

故答案為:①②③.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】解放戰(zhàn)爭時期,某天江南某游擊隊從村莊A處出發(fā)向正東方向行進,此時有一支殘匪在游擊隊的東北方向B處,殘匪沿北偏東60°方向向C村進發(fā),游擊隊步行到A′(A′在B的正南方向)處時,突然接到上級命令,決定改變行進方向,沿北偏東30°方向趕往C村,問:游擊隊的進發(fā)方向A′C與殘匪的行進方向BC至少成多大角度時,才能保證C村村民不受傷害?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a是一個長為2m,寬為2n的長方形,沿圖a中虛線用剪刀把它均分成四塊小長方形,然后按圖b的形狀拼成一個正方形.
(1)請用兩種不同的方法求圖b中陰影部分的面積:
方法1: ____ (只列式,不化簡)
方法2: ______ (只列式,不化簡)
(2)觀察圖b,寫出代數(shù)式(m+n2,(m-n2,mn之間的等量關(guān)系: ______ ;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:若a+b=7,ab=5,

則(a-b2= ______ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,BE平分∠ABC交AD于點E,F(xiàn)為BE上一點,連接DF,過F作FG⊥DF交BC于點G,連接BD交FG于點H,若FD = FG, ,BG = 4,則GH的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ACBD,連接AB,直線AC、BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當動點P落在某個部分時,連接PA,PB,構(gòu)成PAC,APBPBD三個角.(提示:有公共端點的兩條重合的射線所組成的角是0°角)

(1)當動點P落在第①部分時,求證:APB=PAC+PBD

(2)當動點P落在第②部分時,APB=PAC+PBD是否成立?(直接回答成立或不成立)

(3)當動點P落在第③部分時,全面探究PACAPB,PBD之間的關(guān)系,并寫出動點P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙二人從學校出發(fā)去科技館,甲步行一段時間后,乙騎自行車沿相同路線行進,兩人均勻速前行,他們的路程差s(米)與甲出發(fā)時間t(分)之間的函數(shù)關(guān)系如圖所示.下列說法:①乙先到達科技館;②乙的速度是甲速度的2.5倍;③b=460;a=25.其中正確的是______(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同學甲用如圖所示的方法作數(shù)軸上的點C:在OAB中,∠OAB=90°,OA=2,AB=3,且點O、A、C在同一數(shù)軸上,OB=OC.

(1)數(shù)軸上的點C表示的數(shù)是   ,說明數(shù)軸上的點不僅可以表示有理數(shù),還可以表示無理數(shù),即數(shù)軸上的點可以和   數(shù)建立一一對應(yīng)的關(guān)系.

(2)仿照同學甲的作法,在下面的數(shù)軸上作出表示﹣的點D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,AC是對角線.點P為矩形外一點且滿足AP=PC,AP⊥PC.PCAD于點N,連接DP,過點PPM⊥PDADM.

(1)若AP=,AB=BC,求矩形ABCD的面積;

(2)若CD=PM,求證:AC=AP+PN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OAOB,等腰直角三角形CDE的腰CDOB上,ECD=45°,將三角形CDE繞點C逆時針旋轉(zhuǎn)75°,點E的對應(yīng)點N恰好落在OA上,則的值為(

A. B. C. D.

查看答案和解析>>

同步練習冊答案