【題目】已知點A(2,1)是正比例函數(shù)ykx(其中k0)和反比例函數(shù)y(其中t0)的圖像在第一象限的交點,點B是這兩個函數(shù)圖像的另一個交點,點Cx軸上一點.

1)求這兩個函數(shù)的解析式并直接寫出點B的坐標(biāo);

2)求當(dāng)ABC為等腰三角形時,C的坐標(biāo).

【答案】1,;(2

【解析】

1)將點A坐標(biāo)代入正比例函數(shù)ykx和反比例函數(shù)y中求解即可,聯(lián)立兩函數(shù)解析式可得點B坐標(biāo);

2)設(shè)的坐標(biāo)為,由兩點間距離公式可表示出線段AB、BC、AC長,再根據(jù)題意分,情況列出關(guān)于x的方程,求解即可.

1 將點A2,1)代入ykx,解得,

將點A2,1)代入y,解得,

所以正比例函數(shù)的解析式為,反比例函數(shù)解析式為,

聯(lián)立得 ,解得,所以B點坐標(biāo)為;

2 設(shè)的坐標(biāo)為,由兩點間距離公式可得,,

當(dāng)ABC為等腰三角形時

,即,化簡得,解得,

所以C點坐標(biāo)為;

,即,化簡得,解得

所以C點坐標(biāo)為;

,即,化簡得,解得,此時點C的坐標(biāo)為(0,0),點A、B、C在一條直線上,構(gòu)不成等腰三角形.

綜合上述當(dāng)ABC為等腰三角形時,C的坐標(biāo)可能為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB═2,AD=,PBC邊上的一點,且BP=2CP.

(1)用尺規(guī)在圖①中作出CD邊上的中點E,連接AE、BE(保留作圖痕跡,不寫作法);

(2)如圖②,在(1)的條體下,判斷EB是否平分∠AEC,并說明理由;

(3)如圖③,在(2)的條件下,連接EP并廷長交AB的廷長線于點F,連接AP,不添加輔助線,PFB能否由都經(jīng)過P點的兩次變換與PAE組成一個等腰三角形?如果能,說明理由,并寫出兩種方法(指出對稱軸、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向和平移距離)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為保障北京2022 年冬季奧運會賽場間的交通服務(wù),北京將建設(shè)連接北京城區(qū)-延慶區(qū)-崇禮縣三地的高速鐵路和高速公路.在高速公路方面,目前主要的交通方式是通過京藏高速公路G6),其路程為220公里.為將崇禮縣納入北京一小時交通圈,有望新建一條高速公路,將北京城區(qū)到崇禮的道路長度縮短到100公里.如果行駛的平均速度每小時比原來快22公里,那么從新建高速行駛?cè)趟钑r間與從原高速行駛?cè)趟钑r間比為411.求從新建高速公路行駛?cè)绦枰嗌傩r?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了參加荊州市中小學(xué)生首屆詩詞大會,某校八年級的兩班學(xué)生進行了預(yù)選,其中班上前5名學(xué)生的成績(百分制)分別為:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通過數(shù)據(jù)分析,列表如下:

班級

平均分

中位數(shù)

眾數(shù)

方差

八(1)

85

b

c

22.8

八(2)

a

85

85

19.2

(1)直接寫出表中a,b,c的值;

(2)根據(jù)以上數(shù)據(jù)分析,你認為哪個班前5名同學(xué)的成績較好?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦AD平分∠BAC,DEACAC的延長線于點E.

(1)求證:DE是⊙O的切線;

(2)AD=BCO半徑為6,求∠CAD圍成的陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)開展4種課外興趣小組活動,分別為A;繪畫:B;機器人:C;跳舞:D;吉他.每個學(xué)生都要選取一個興趣小組參與活動,小明對同學(xué)們選取的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了如下的統(tǒng)計圖:

(1)本次調(diào)查學(xué)生共   人,a=   ,并將條形圖補充完整;

(2)如果該校有學(xué)生500人,則選擇“機器人”活動的學(xué)生估計有多少人?

(3)學(xué)校讓每班同學(xué)在A,B,C,D四種活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表法的方法,求每班抽取的兩種形式恰好是“繪畫”和“機器人”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)銷一種成本為每千克元的水產(chǎn)品,據(jù)市場分析,若按每千克元銷售,一個月能售出,銷售單價每漲(或跌)元,月銷售量就減少(或增加),解答以下問題:

(1)當(dāng)銷售單價定位每千克元時,計算月銷售量和月銷售利潤;

(2)商店想在月銷售成本不超過元的情況下,使得月銷售利潤達到元,銷售單價應(yīng)為多少?

(3)商店要使得月銷售利潤達到最大,銷售單價應(yīng)為多少?此時利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,ACBDCE均為等邊三角形,點AD,E在同一直線上,連接BE,則AEB的度數(shù)為__________.

(2)如圖2,ACBDCE均為等腰直角三角形,ACB=DCE=90°,點A,D,E在同一直線上,CMDCEDE邊上的高,連接BE.求AEB的度數(shù)及線段CM,AEBE之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為24m的籬笆,一面利用墻(墻的最大可用長度a10m),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬ABxm,面積為Sm2

1)求Sx的函數(shù)關(guān)系式;

2)如果要圍成面積為45m2的花圃,AB的長是多少米?

3)能圍成面積比45 m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案