平面直角坐標(biāo)系xOy中,拋物線y=ax2-4ax+4a+c與x軸交于點(diǎn)A、B,與y軸的正半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(1,0),OB=OC.

(1)求此拋物線的解析式;
(2)若點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線與拋物線在x軸下方交于點(diǎn)Q,試問(wèn)線段PQ的長(zhǎng)度是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)若此拋物線的對(duì)稱(chēng)軸上的點(diǎn)M滿足∠AMC=45°,求點(diǎn)M的坐標(biāo).

(1)y=x2-4x+3;(2)存在,;(3)(2,2-)或(2,2+).

解析試題分析:(1)求出拋物線的對(duì)稱(chēng)軸,再根據(jù)對(duì)稱(chēng)性求出點(diǎn)B的坐標(biāo),然后求出點(diǎn)C的坐標(biāo),再把點(diǎn)A、C的坐標(biāo)代入拋物線求出a、c即可得解;
(2)利用待定系數(shù)法求出直線BC的解析式,然后表示出PQ的長(zhǎng),再根據(jù)二次函數(shù)的最值問(wèn)題解答;
(3)求出△ABC的外接圓的圓心D的坐標(biāo),再求出外接圓的半徑,根據(jù)在同圓或等圓中,同弧所對(duì)的圓周角相等可得∠AMC=∠ABC=45°,再分點(diǎn)M在點(diǎn)D的下方和上方兩種情況寫(xiě)出點(diǎn)M的坐標(biāo)即可.
試題解析::(1)拋物線的對(duì)稱(chēng)軸為直線x=
∵點(diǎn)A(1,0),
∴點(diǎn)B的坐標(biāo)為(3,0),
∵點(diǎn)C在y軸的正半軸,OB=OC,
∴點(diǎn)C的坐標(biāo)為(0,3),
,
解得,
∴此拋物線的解析式y(tǒng)=x2-4x+3;
(2)設(shè)直線BC的解析式為y=kx+b(k≠0),則
,
解得,
∴直線BC的解析式為y=-x+3,
∴PQ=(-x+3)-(x2-4x+3)=-x2+3x=-(x-2+,
∵點(diǎn)Q在x軸下方,
∴1<x<3,
又∵-1<0,
∴當(dāng)x=時(shí),PQ的長(zhǎng)度有最大值
(3)如圖,設(shè)△ABC的外接圓的圓D,

則點(diǎn)D在對(duì)稱(chēng)性直線x=2上,也在直線BC的垂直平分線y=x上,
∴點(diǎn)D的坐標(biāo)為(2,2),
∴外接圓的半徑為,
∵OB=OC,
∴∠ABC=45°,
∴∠AMC=45°時(shí),點(diǎn)M為⊙D與對(duì)稱(chēng)軸的交點(diǎn),
點(diǎn)M在點(diǎn)D的下方時(shí),M1(2,2-),
點(diǎn)M在點(diǎn)D的上方時(shí),M2(2,2+),
綜上所述,M(2,2-)或(2,2+)時(shí),拋物線的對(duì)稱(chēng)軸上的點(diǎn)M滿足∠AMC=45°.
考點(diǎn): 二次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某批發(fā)商以每件50元的價(jià)格購(gòu)進(jìn)800件T恤,第一個(gè)月以單價(jià)80元銷(xiāo)售,售出了200件;第二個(gè)月如果單價(jià)不變,預(yù)計(jì)仍可售出200件,批發(fā)商為增加銷(xiāo)售量,決定降價(jià)銷(xiāo)售,根據(jù)市場(chǎng)調(diào)查,單價(jià)每降低1元,可多售出10件,但最低單價(jià)應(yīng)高于購(gòu)進(jìn)的價(jià)格;第二個(gè)月結(jié)束后,批發(fā)商將對(duì)剩余的T恤一次性清倉(cāng)銷(xiāo)售,清倉(cāng)時(shí)單價(jià)為40元,設(shè)第二個(gè)月單價(jià)降低x元.
(1)填表:(不需化簡(jiǎn))

時(shí)間
 第一個(gè)月
第二個(gè)月
清倉(cāng)時(shí)
 單價(jià)(元)
 80
 
 40
 銷(xiāo)售量(件)
 200
 
 
(2)如果批發(fā)商希望通過(guò)銷(xiāo)售這批T恤獲利9000元,那么第二個(gè)月的單價(jià)應(yīng)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某服裝經(jīng)營(yíng)部每天的固定費(fèi)用為300元,現(xiàn)試銷(xiāo)一種成本為每件80元的服裝.規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于35%.經(jīng)試銷(xiāo)發(fā)現(xiàn),每件銷(xiāo)售單價(jià)相對(duì)成本提高x(元)(x為整數(shù))與日均銷(xiāo)售量y(件)之間的關(guān)系符合一次函數(shù)y=kx+b,且當(dāng)x=10時(shí),y=100;x=20時(shí),y=80.
(1)求一次函數(shù)y=kx+b的關(guān)系式;
(2)設(shè)該服裝經(jīng)營(yíng)部日均獲得毛利潤(rùn)為W元(毛利潤(rùn)=銷(xiāo)售收入-成本-固定費(fèi)用),求W關(guān)于x的函數(shù)關(guān)系式;并求當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),日均毛利潤(rùn)最大,最大日均毛利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的解析式為
(1)求證:不論m為何值,此拋物線與x軸必有兩個(gè)交點(diǎn),且兩交點(diǎn)A、B之間的距離為定值;
(2)設(shè)點(diǎn)P為此拋物線上一點(diǎn),若△PAB的面積為8,求符合條件的點(diǎn)P的坐標(biāo);
(3)若(2)中△PAB的面積為S(S>0),試根據(jù)面積S值的變化情況,確定符合條件的點(diǎn)P的個(gè)數(shù)(本小題直接寫(xiě)出結(jié)論,不要求寫(xiě)出計(jì)算、證明過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線與x軸交于A(1,0)、B(-4,0)兩點(diǎn),交y軸與C點(diǎn).

(1)求該拋物線的解析式.
(2)在該拋物線位于第二象限的部分上是否存在點(diǎn)D,使得△DBC的面積S最大?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)設(shè)拋物線的頂點(diǎn)為點(diǎn)F,連接線段CF,連接直線BC,請(qǐng)問(wèn)能否在直線BC上找到一個(gè)點(diǎn)M,在拋物線上找到一個(gè)點(diǎn)N,使得C、F、M、N四點(diǎn)組成的四邊形為平行四邊形,若存在,請(qǐng)寫(xiě)出點(diǎn)M和點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,二次函數(shù)的頂點(diǎn)坐標(biāo)為(0,2),矩形ABCD的頂點(diǎn)B.C在x軸上,A.D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內(nèi)。

(1)求二次函數(shù)的解析式;
(2)設(shè)點(diǎn)D的坐標(biāo)為(x,y),試求矩形ABCD的周長(zhǎng)P關(guān)于自變量x的函數(shù)解析式,并求出自變量x的取值范圍;
(3)是否存在這樣的矩形ABCD,使它的周長(zhǎng)為9?試證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)y=a(x-m)2-2a(x-m)(a,m為常數(shù),且a≠0).
(1)求證:不論a與m為何值,該函數(shù)的圖象與x軸總有兩個(gè)公共點(diǎn);
(2)設(shè)該函數(shù)的圖象的頂點(diǎn)為C,與x軸交于A,B兩點(diǎn),當(dāng)△ABC是等腰直角三角形時(shí),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,某居民小區(qū)要在一塊一邊靠墻(墻長(zhǎng)15m)的空地上修建一個(gè)矩形花園ABCD,花園的一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍成,若花園的BC邊長(zhǎng)為x米,花園的面積為y(m2

(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)滿足條件的花園面積能達(dá)到200m2嗎?若能,求出此時(shí)x的值;若不能,說(shuō)明理由;
(3)請(qǐng)結(jié)合題意,判斷當(dāng)x取何值時(shí),花園的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

為了落實(shí)國(guó)務(wù)院的指示精神,某地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷(xiāo)一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷(xiāo)售量y(千克)與銷(xiāo)售價(jià)x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷(xiāo)售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷(xiāo)售價(jià)定為每千克多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?
(3)如果物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷(xiāo)售價(jià)不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售價(jià)應(yīng)定為每千克多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案