【題目】如圖,每個(gè)小方格都是邊長(zhǎng)為1的正方形,

1)求圖中格點(diǎn)四邊形ABCD的面積和周長(zhǎng);

2)求的度數(shù).

【答案】1)面積為12.5;周長(zhǎng)為;(290°

【解析】

1)四邊形ABCD的面積等于大正方形的面積減去4個(gè)直角三角形的面積;由勾股定理求出AD、ABBC、CD,即可得出四邊形ABCD的周長(zhǎng);
2)求出AD2+CD2=AC2,由勾股定理的逆定理即可求出結(jié)果.

解:(1)根據(jù)題意得:
四邊形ABCD的面積=5×5-×3×3-×2×3-×2×4-×2×1=12.5;
由勾股定理得:

AD=,AB=,

BC=CD=,

∴四邊形ABCD的周長(zhǎng)==;

2)∵AD2+CD2=5+20=25AC2=52=25
AD2+CD2=AC2,
∴∠ADC=90°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按規(guī)律填空.

(1)1,3,5,7,9__________;

(2)2,5,8,11,14,__________;

(3),__________

(4),,,,__________;

(5)2,6,15,31,56,__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產(chǎn)部有技術(shù)工人15人,生產(chǎn)部為了合理制定產(chǎn)品的每月生產(chǎn)定額,統(tǒng)計(jì)了這15人某月的加工零件個(gè)數(shù).(如下表)

每人加工零件數(shù)

54

45

30

24

21

12

數(shù)

1

1

2

6

3

2

1)寫出這15人該月加工零件數(shù)的平均數(shù)、中位數(shù)和眾數(shù);

2)假設(shè)生產(chǎn)部負(fù)責(zé)人把每位工人的月加工零件數(shù)定為24件,你認(rèn)為是否合理?為什么?如果不合理,請(qǐng)你設(shè)計(jì)一個(gè)較為合理的生產(chǎn)定額,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,當(dāng)x>0時(shí),y的值隨x的值增大而增大的是(
A.y=﹣x2
B.y=x﹣1
C.y=﹣x+1
D.y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中折線表示芳芳騎自行車離家的距離與時(shí)間的關(guān)系,她9點(diǎn)離開家,15點(diǎn)回家,請(qǐng)根據(jù)圖象回答下列問題:

1)芳芳到達(dá)離家最遠(yuǎn)的地方時(shí),離家________千米;

2)第一次休息時(shí)離家________ 千米;

3)她在1000~1030的平均速度是_________;

4)芳芳一共休息了_________ 小時(shí);

5)芳芳返回用了____________小時(shí);

6)返回時(shí)的平均速度是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD對(duì)角線AC上一點(diǎn),EFAB,EGBC,垂足分別為E,F,若正方形ABCD的周長(zhǎng)是40 cm.

(1)求證:四邊形BFEG是矩形;

(2)求四邊形EFBG的周長(zhǎng);

(3)當(dāng)AF的長(zhǎng)為多少時(shí),四邊形BFEG是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,Aa,0),B0,2

1)點(diǎn)(k+1,2k5)關(guān)于x軸的對(duì)稱點(diǎn)在第一象限,a為實(shí)數(shù)k的范圍內(nèi)的最大整數(shù),求A點(diǎn)的坐標(biāo)及△AOB的面積;

2)在(1)的條件下如圖1,點(diǎn)P是第一象限內(nèi)的點(diǎn),且△ABP是以AB為腰的等腰直角三角形,請(qǐng)直接寫出P點(diǎn)坐標(biāo);

3)在(1)的條件下,如圖2,以AB、OB的作等邊△ABC和等邊△OBD,連接AD、OC交于E點(diǎn),連接BE

求證:EB平分∠CED;

M點(diǎn)是y軸上一動(dòng)點(diǎn),求AM+CM最小時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的頂點(diǎn)為M(﹣2,﹣4),與x軸交于A、B兩點(diǎn),且A(﹣6,0),與y軸交于點(diǎn)C.

(1)求拋物線的函數(shù)解析式;
(2)求△ABC的面積;
(3)能否在拋物線第三象限的圖象上找到一點(diǎn)P,使△APC的面積最大?若能,請(qǐng)求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)O是菱形ABCD的對(duì)稱中心.邊AB與x軸平行,點(diǎn)B(1,-2),反比例函數(shù) (k≠0)的圖象經(jīng)過A,C兩點(diǎn).

(1)求點(diǎn)C的坐標(biāo)及反比例函數(shù)的解析式.
(2)直線BC與反比例函數(shù)圖象的另一交點(diǎn)為E,求以O(shè),C,E為頂點(diǎn)的三角形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案