(2008•黃石)如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交x軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由;
(3)過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

【答案】分析:(1)由拋物線過A、B、C三點可求出拋物線表達(dá)式;
(2)假設(shè)存在,設(shè)出P點,解出直線CD的解析式,根據(jù)點P到CD的距離等于PO可解出P點坐標(biāo);
(3)應(yīng)分兩種情況:拋物線向上或下平移,設(shè)出解析式,代入點求出平移的單位長度.
解答:解:(1)設(shè)拋物線解析式為y=a(x+2)(x-4).
把C(0,8)代入,得a=-1.
∴y=-x2+2x+8=-(x-1)2+9,
頂點D(1,9);(2分)

(2)假設(shè)滿足條件的點P存在.依題意設(shè)P(2,t).
由C(0,8),D(1,9)求得直線CD的解析式為y=x+8,
它與x軸的夾角為45°.
設(shè)OB的中垂線交CD于H,則H(2,10).
則PH=|10-t|,點P到CD的距離為
.(4分)

平方并整理得:t2+20t-92=0,解之得t=-10±8
∴存在滿足條件的點P,P的坐標(biāo)為(2,-10±8).(6分)

(3)由上求得E(-8,0),F(xiàn)(4,12).
①若拋物線向上平移,可設(shè)解析式為y=-x2+2x+8+m(m>0).
當(dāng)x=-8時,y=-72+m.
當(dāng)x=4時,y=m.
∴-72+m≤0或m≤12.
∴0<m≤72.(8分)
②若拋物線向下平移,可設(shè)解析式為y=-x2+2x+8-m(m>0).
,
有-x2+x-m=0.
∴△=1+4m≥0,
∴m≥-
∴向上最多可平移72個單位長,向下最多可平移個單位長.(10分)
點評:此題考查待定系數(shù)求拋物線解析式,第二問考查垂直平分線性質(zhì),利用距離相等解題,最后一問考拋物線的平移,要注意已知條件和技巧.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年湖北省中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•黃石)如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交x軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由;
(3)過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省綏化市慶安縣發(fā)展中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•黃石)如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交x軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由;
(3)過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省孝感市中考數(shù)學(xué)適應(yīng)性訓(xùn)練試卷(解析版) 題型:解答題

(2008•黃石)如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交x軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由;
(3)過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年湖北省黃石市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•黃石)如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交x軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由;
(3)過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

查看答案和解析>>

同步練習(xí)冊答案