【題目】如圖,在扇形AOB中,∠AOB=90°,以點A為圓心,OA的長為半徑作 于點C,若OA=2,則陰影部分的面積為

【答案】
【解析】解:連接OC、AC,
由題意得,OA=OC=AC=2,
∴△AOC為等邊三角形,∠BOC=30°,
∴扇形△COB的面積為: = ,△AOC的面積為: ×2× = ,扇形AOC的面積為: = ,則陰影部分的面積為: + = ,故答案為:

連接OC、AC,根據(jù)題意得到△AOC為等邊三角形,∠BOC=30°,分別求出扇形△COB的面積、△AOC的面積、扇形AOC的面積,計算即可.本題考查的是扇形面積計算,掌握等邊三角形的性質(zhì)、扇形的面積公式S= 是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了弘揚荊州優(yōu)秀傳統(tǒng)文化,某中學(xué)舉辦了荊州文化知識大賽,其規(guī)則是:每位參賽選手回答100道選擇題,答對一題得1分,不答或錯答為得分、不扣分,賽后對全體參賽選手的答題情況進(jìn)行了相關(guān)統(tǒng)計,整理并繪制成如下圖表:

組別

分?jǐn)?shù)段

頻數(shù)(人)

頻率

1

50≤x<60

30

0.1

2

60≤x<70

45

0.15

3

70≤x<80

60

n

4

80≤x<90

m

0.4

5

90≤x<100

45

0.15

請根據(jù)以圖表信息,解答下列問題:

(1)表中m= , n=;
(2)補全頻數(shù)分布直方圖;
(3)全體參賽選手成績的中位數(shù)落在第幾組;
(4)若得分在80分以上(含80分)的選手可獲獎,記者從所有參賽選手中隨機采訪1人,求這名選手恰好是獲獎?wù)叩母怕剩?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=40°,D點是∠ABC和∠ACB角平分線的交點,則∠BDC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明一家利用國慶八天駕車到某景點旅游,小汽車出發(fā)前油箱有油35L,行駛?cè)舾尚r后,途中在加油站加油若干升,油箱中余油量Q(L)與行駛時間t(h)之間的關(guān)系如圖所示,根據(jù)圖像回答下列問題:

(1)小汽車行駛______h后加油,中途加油_______L

(2)求加油前油箱余油量Q與行駛時間t的函數(shù)關(guān)系式

(3)如果小汽車在行駛過程中耗油量速度不變,加油站距景點200km,車速80km/h,要到達(dá)目的地,油箱中的油是否夠用?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用(-1,0)表示A點的位置,用(2,1)表示B點的位置,那么:

(1)畫出直角坐標(biāo)系。

(2)寫出△DEF的三個頂點的坐標(biāo)。

(3)在圖中表示出點M(6,2),N(4,4)的位置。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次社會調(diào)查活動中,小華收集到某“健步走運動”團隊中20名成員一天行走的步數(shù),記錄如下:

5640

6430

6520

6798

7325

8430

8215

7453

7446

6754

7638

6834

7326

6830

8648

8753

9450

9865

7290

7850

對這20個數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
步數(shù)分組統(tǒng)計表

組別

步數(shù)分組

頻數(shù)

A

5500≤x<6500

2

B

6500≤x<7500

10

C

7500≤x<8500

m

D

8500≤x<9500

3

E

9500≤x<10500

n

請根據(jù)以上信息解答下列問題:

(1)填空:m= , n=
(2)補全頻數(shù)發(fā)布直方圖;
(3)這20名“健步走運動”團隊成員一天行走步數(shù)的中位數(shù)落在組;
(4)若該團隊共有120人,請估計其中一天行走步數(shù)不少于7500步的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=4.2cm,則AD=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的點D處測得樓頂B的仰角為45°,其中點A、C、E在同一直線上.

(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是某市一座人行天橋的示意圖,天橋離地面的高BC是10米,坡面10米處有一建筑物HQ,為了方便使行人推車過天橋,市政府部門決定降低坡度,使新坡面DC的傾斜角∠BDC=30°,若新坡面下D處與建筑物之間需留下至少3米寬的人行道,問該建筑物是否需要拆除(計算最后結(jié)果保留一位小數(shù)).(參考數(shù)據(jù): =1.414, =1.732)

查看答案和解析>>

同步練習(xí)冊答案