【題目】用配方法解下列方程時,配方有錯誤的是( )
A.x2﹣2x﹣99=0化為(x﹣1)2=100
B.x2+8x+9=0化為(x+4)2=25
C.2t2﹣7t﹣4=0化為(t﹣ )2=
D.3x2﹣4x﹣2=0化為(x﹣ )2=
【答案】B
【解析】解:A、∵x2﹣2x﹣99=0,∴x2﹣2x=99,∴x2﹣2x+1=99+1,∴(x﹣1)2=100,故A選項正確.
B、∵x2+8x+9=0,∴x2+8x=﹣9,∴x2+8x+16=﹣9+16,∴(x+4)2=7,故B選項錯誤.
C、∵2t2﹣7t﹣4=0,∴2t2﹣7t=4,∴t2﹣ t=2,∴t2﹣ t+ =2+ ,∴(t﹣ )2= ,故C選項正確.
D、∵3x2﹣4x﹣2=0,∴3x2﹣4x=2,∴x2﹣ x= ,∴x2﹣ x+ = + ,∴(x﹣ )2= .故D選項正確.
所以答案是:B.
【考點精析】本題主要考查了配方法的相關知識點,需要掌握左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒問題.左邊分解右合并,直接開方去解題才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點A,B的坐標分別為A(a,0),B(b,0),且a,b滿足|2a+6|+(2a﹣3b+12)2=0,現(xiàn)同時將點A,B分別向左平移2個單位,再向上平移2個單位,分別得到點A,B的對應點C,D,連接AC,BD.
(1)請直接寫出A,B兩點的坐標;
(2)如圖2,點P是線段AC上的一個動點,點Q是線段CD的中點,連接PQ,PO,當點P在線段AC上移動時(不與A,C重合),請找出∠PQD,∠OPQ,∠POB的數(shù)量關系,并證明你的結論;
(3)在坐標軸上是否存在點M,使三角形MAD的面積與三角形ACD的面積相等?若存在,直接寫出點M的坐標;若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學在今年4月23日的“世界讀書日”開展“人人喜愛閱讀,爭當閱讀能手”活動,同學們積極響應,涌現(xiàn)出大批的閱讀能手.為了激勵同學們的閱讀熱情,養(yǎng)成每天閱讀的好習慣,學校對閱讀能手進行了獎勵表彰,計劃用2700元來購買甲、乙、丙三種書籍共100本作為獎品,已知甲、乙、丙三種書的價格比為2:2:3,甲種書每本20元.
(1)求出乙、丙兩種書的每本各多少元?
(2)若學校購買甲種書的數(shù)量是乙種書的1.5倍,恰好用完計劃資金,求甲、乙、丙三種書各買了多少本?
(3)在活動中,同學們表現(xiàn)優(yōu)秀,學校決定提升獎勵檔次,增加了245元的購書款,在購買書籍總數(shù)不變的情況下,求丙種書最多可以買多少本?
(4)七(1)班閱讀氛圍濃厚,同伴之間交換書籍共享閱讀,已知甲種書籍共270頁,小明同學閱讀甲種書籍每天21頁,閱讀5天后,發(fā)現(xiàn)同伴比他看得快,為了和同伴及時交換書籍,接下來小明每天多讀了a頁(20<a<40),結果再用了b天讀完,求小明讀完整本書共用了多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE = AF
(1)求證:BE = DF;
(2)連接AC交EF于點O,延長OC至點M,使OM = OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】江南農(nóng)場收割小麥,已知1臺大型收割機和3臺小型收割機1小時可以收割小麥1.4公頃,2臺大型收割機和5臺小型收割機1小時可以收割小麥2.5公頃.
(1)每臺大型收割機和每臺小型收割機1小時收割小麥各多少公頃?
(2)大型收割機每小時費用為300元,小型收割機每小時費用為200元,兩種型號的收割機一共有10臺,要求2小時完成8公頃小麥的收割任務,且總費用不超過5400元,有幾種方案?請指出費用最低的一種方案,并求出相應的費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是中國傳統(tǒng)數(shù)學最重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.它的代數(shù)成就主要包括開方術、正負術和方程術.其中,方程術是《九章算術》最高的數(shù)學成就.《九章算術》中記載:“今有人共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)幾何?”
譯文:“有幾個人共同出錢買雞,如果每人出九錢,那么多了十一錢;如果每人出六錢,那么少了十六錢.問:有幾個人共同出錢買雞?設有x個人共同買雞,根據(jù)題意列一元一次方程._____
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com