【題目】某市團委舉辦“我的中國夢”為主題的知識競賽,甲、乙兩所學校參賽人數(shù)相等,比賽結(jié)束后,發(fā)現(xiàn)學生成績分別為70分、80分、90分、100分,并根據(jù)統(tǒng)計數(shù)據(jù)繪制了如下不完整的統(tǒng)計圖表:

乙校成績統(tǒng)計表

分數(shù)/分

人數(shù)/人

70

7

80

90

1

100

8

(1)在圖①中,“80分”所在扇形的圓心角度數(shù)為________;

(2)請你將圖②補充完整;

(3)求乙校成績的平均分;

(4)經(jīng)計算知s2=135,s2=175,請你根據(jù)這兩個數(shù)據(jù),對甲、乙兩校成績作出合理評價.

【答案】(1)54°;(2)補圖見解析;(3)85分;(4)甲校20名同學的成績相對乙校較整齊.

【解析】試題分析:(1)根據(jù)統(tǒng)計圖可知甲班70分的有6人,從而可求得總?cè)藬?shù),然后可求得成績?yōu)?0分的同學所占的百分比,最后根據(jù)圓心角的度數(shù)=360°×百分比即可求得答案;

(2)用總?cè)藬?shù)減去成績?yōu)?0分、80分、90分的人數(shù)即可求得成績?yōu)?00分的人數(shù),從而可補全統(tǒng)計圖;

(3)先求得乙班成績?yōu)?0分的人數(shù),然后利用加權(quán)平均數(shù)公式計算平均數(shù);

(4)根據(jù)方差的意義即可做出評價.

試題解析:(1)6÷30%=20,

3÷20=15%,

360°×15%=54°;

(2)20-6-3-6=5,統(tǒng)計圖補充如下:

(3)20-1-7-8=4,

=85;

(4)∵S2<S2

∴甲班20同名同學的成績比較整齊.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,圓P經(jīng)過點A(﹣4,0),點B(6,0),交y軸于點C,∠ACB=45°,連結(jié)AP、BP.

(1)求圓P的半徑;
(2)求OC長;
(3)在圓P上是否存在點D,使△BCD的面積等于△ABC的面積?若存在求出點D坐標;若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD與菱形EFGH的對角線均交于點O,且EG∥BC,將矩形折疊,使點C與點O重合,折痕MN恰好過點G若AB= ,EF=2,∠H=120°,則DN的長為( 。
A.
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與直線相交于點 A .

(I)求直線 x 軸的交點坐標,并在坐標系中標出點 A 及畫出直線 的圖象;

(II)若點P是直線在第一象限內(nèi)的一點,過點P PQ//y 軸交直線 于點Q,△POQ 的面積等于60 ,試求點P 的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形 ABCD 中,AC=a,BD=b,且 AC⊥BD,順次連接四邊形ABCD各邊中點,得到四邊形A1B1C1D1,再順次連接四邊形A1B1C1D1各邊中點,得到四邊形A2B2C2D2,…,如此進行下去,得到四邊形AnBnCnDn.下列結(jié)論正確的有( )

①四邊形A2B2C2D2是矩形;

②四邊形A4B4C4D4是菱形;

③四邊形A5B5C5D5的周長是

④四邊形AnBnCnDn的面積是

A. ①②③ B. ②③④ C. ①② D. ②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,則B、D兩點間的距離為( 。

A.
B.2
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為原點,已知數(shù)軸上點A和點B所表示的數(shù)分別為﹣10和6,動點P從點A出發(fā),以每秒6個單位長度的速度沿數(shù)軸正方向勻速運動,同時動點Q從點B出發(fā),以每秒3個單位的速度沿數(shù)軸負方向勻速運動,設運動時間為t(t>0)秒

(1)當t=2時,求AP的中點C所對應的數(shù);

(2)當PQ=OA時,求點Q所對應的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以半徑為1的圓的內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則該三角形的面積是( 。
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案