【題目】已知:如圖在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A、B分別是y軸正半軸和x軸正半軸上的點(diǎn),OA=OB=a,a滿足等式2a﹣2×16=64.
(1)求點(diǎn)A的坐標(biāo);
(2)動(dòng)點(diǎn)C從O點(diǎn)出發(fā)沿x軸負(fù)半軸方向勻動(dòng),速度為每秒2個(gè)單位長(zhǎng)度,過點(diǎn)B作BD⊥AC于D,交y軸于點(diǎn)E,設(shè)C的運(yùn)動(dòng)時(shí)間為t,用含t的代數(shù)式表示線段AE的長(zhǎng).
(3)在(2)的條件下過點(diǎn)O作OF⊥BD于點(diǎn)F,交AB于點(diǎn)G,連接EG,是否存在t值,使∠AGE=∠OGB,若存在求出t值,若不存在說明理由.
【答案】(1)A(0,4);(2)AE=4﹣2t;(3)t=1.
【解析】
(1)由同底數(shù)冪的乘法可求a的值;
(2)由“AAS”可證△ACO≌△BEO,可得CO=OE=2t,即可求AE的長(zhǎng);
(3)過點(diǎn)A作AH∥OB,交OG延長(zhǎng)線于H,由“ASA”可證△AGE≌△AGH,可得AH=AE=4﹣2t,由“ASA”可證△AOH≌△OBE,可得AH=OE,即可求t的值.
(1)∵2a﹣2×16=64,
∴a﹣2=2,
∴a=4.
∵OA=OB=a,
∴OA=OB=4,
∴點(diǎn)A(0,4),點(diǎn)B(4,0);
(2)如圖1,
∵BD⊥AC,AO⊥BC,
∴∠ACO+∠CBD=90,∠ACO+∠CAO=90,
∴∠CBD=∠CAO,且AO=BO,∠AOC=∠BOE=90,
∴△ACO≌△BEO(AAS),
∴CO=OE=2t,
∴AE=AO﹣OE=4﹣2t,
(3)存在.
如圖2,過點(diǎn)A作AH∥OB,交OG延長(zhǎng)線于H,
∴∠HAO=∠AOB=90.
∵AO=BO,∠AOB=90,
∴∠OAB=∠OBA=45,
∴∠HAG=∠OAB=45,且AG=AG,∠AGE=∠OGB=∠AGH,
∴△AGE≌△AGH(ASA),
∴AH=AE=4﹣2t.
∵OF⊥BD,
∴∠FOB+∠OBD=90,且∠AOH+∠FOB=90,
∴∠AOH=∠OBD,且AO=OB,∠HAO=∠EOB,
∴△AOH≌△OBE(ASA),
∴AH=OE,
∴4﹣2t=2t,
∴t=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一副直角三角板拼在一起得四邊形ABCD,∠ACB=45°,∠ACD=30°,點(diǎn)E為CD邊上的中點(diǎn),連接AE,將△ADE沿AE所在直線翻折得到△AD′E,D′E交AC于F點(diǎn),若AB= 6cm,點(diǎn)D′到BC的距離是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】服裝店購(gòu)進(jìn)一批秋衣,價(jià)格為每件30元.物價(jià)部門規(guī)定其銷售單價(jià)不高于每件70元,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷售量y(件)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí),y=80;x=50時(shí),y=100.在銷售過程中,每天還要支付其他費(fèi)用450元.
(1)求出y與x的函數(shù)關(guān)系式.
(2)求該服裝店要想銷售這批秋衣日獲利750元,售價(jià)應(yīng)定多少元?
(3)請(qǐng)銷售單價(jià)為多少元時(shí),該服裝店日獲利最大?最大獲利是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,以點(diǎn)為圓心,長(zhǎng)為半徑畫弧,與射線相交于點(diǎn),連接,過點(diǎn)作,垂足為.
(1)線段與圖中現(xiàn)有的哪一條線段相等?你得出的結(jié)論是: ;
(2)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng).DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5).
解答下列問題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最。咳舸嬖,求出y的最小值;若不存在,說明理由.
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列帶有坐標(biāo)系的網(wǎng)格中,△ABC的頂點(diǎn)都在邊長(zhǎng)為1的小正方形的頂點(diǎn)上
(1) 直接寫出坐標(biāo):A__________,B__________
(2) 畫出△ABC關(guān)于y軸的對(duì)稱的△DEC(點(diǎn)D與點(diǎn)A對(duì)應(yīng))
(3) 用無刻度的直尺,運(yùn)用全等的知識(shí)作出△ABC的高線BF(保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,CM切⊙O于點(diǎn)C,∠BCM=60°,則∠B的正切值是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程+2x+2k-2=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若k為正整數(shù),求該方程的根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com