【題目】如圖1所示,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0)、B(5,0)兩點,與y軸交于C點,D為拋物線的頂點,E為拋物線上一點,且C、E關(guān)于拋物線的對稱軸對稱,分別作直線AE、DE.

(1)求此二次函數(shù)的關(guān)系式;
(2)在圖1中,直線DE上有一點Q,使得△QCO≌△QBO,求點Q的坐標;
(3)如圖2,直線DE與x軸交于點F,點M為線段AF上一個動點,有A向F運動,速度為每秒2個單位長度,運動到F處停止,點N由F處出發(fā),沿射線FE方向運動,速度為每秒 個單位長度,M、N兩點同時出發(fā),運動時間為t秒,當M停止時點N同時停止運動坐標平面內(nèi)有一個動點P,t為何值時,以P、M、N、F為頂點的四邊形是特殊的平行四邊形.請直接寫出t值.

【答案】
(1)

解:拋物線的解析式為y=﹣(x+1)(x﹣5),即y=﹣x2+4x+5;


(2)

解:如圖1,y=﹣x2+4x+5=﹣(x﹣2)2+9,則D(2,9),拋物線的對稱軸為直線x=2,

當x=0時,y=﹣x2+4x+5=5,則C(0,5),

∵C、E關(guān)于拋物線的對稱軸對稱,

∴E(4,5),

設(shè)直線DE的解析式為y=mx+n,

把D(2,9),E(4,5)代入得 ,解得 ,

∴直線DE的解析式為y=﹣2x+13,

∵△QCO≌△QBO,

∴∠COQ=∠BOQ,

∴點Q為第一象限角平分線上的點,

即OQ的解析式為y=x,

解方程組 ,解得

∴Q點的坐標為( , );


(3)

解:如圖2,

對稱軸交x軸于點H,DH=9,F(xiàn)H= ,DF= ,

當y=0時,﹣2x+13=0,解得x= ,則F( ,0),

∴AF= ﹣(﹣1)= ,

AM=2t,F(xiàn)N= t,則FM= ﹣2t,

當以P、M、N、F為頂點的四邊形是菱形,且FM、FN為菱形的兩鄰邊,則FN=FM,即 t= ﹣2t,解得t=

當以P、M、N、F為頂點的四邊形是菱形,且FN為菱形對角線,連接MP交FN于Q,則PM與NQ互相垂直平分,F(xiàn)Q= t,

易得△FQH∽△FHD,

∴FQ:FH=FM:FD,即 t: =( ﹣2t): ,解得t=

當以P、M、N、F為頂點的四邊形是菱形,且FM為菱形對角線,NP與MF相交于K,如圖3,則MF與NP互相垂直平分,F(xiàn)K= MF= ﹣2t),

易得△FKN∽△FHD,

∴FK:FH=FN:FD,即 ﹣2t): = t: ,解得t=

當以P、M、N、F為頂點的四邊形是矩形,且∠NMF=90°,

易得△FMN∽△FHD,

∴FM:FH=FN:FD,即( ﹣2t): = t: ,解得t= ;

當以P、M、N、F為頂點的四邊形是矩形,且∠MNF=90°,

易得△FNM∽△FHD,

∴FM:FD=FN:FH,即( ﹣2t): = t: ,解得t= ,

綜上所述,t的值為


【解析】(1)直接利用交點式寫出拋物線的解析式;(2)如圖1,利用配方法得到D(2,9),拋物線的對稱軸為直線x=2,再確定C(0,5),則E(4,5),接著利用待定系數(shù)法求出直線DE的解析式為y=﹣2x+13,然后根據(jù)全等三角形的性質(zhì)得到∠COQ=∠BOQ,所以點Q為第一象限角平分線上的點,最后解方程組 得Q點的坐標;(3)如圖2,對稱軸交x軸于點H,先確定DH=9,F(xiàn)H= ,DF= ,AF= ,AM=2t,F(xiàn)N= t,則FM= ﹣2t,分類討論:當以P、M、N、F為頂點的四邊形是菱形,且FM、FN為菱形的兩鄰邊,則FN=FM,即 t= ﹣2t;當以P、M、N、F為頂點的四邊形是菱形,且FN為菱形對角線,連接MP交FN于Q,利用菱形的性質(zhì)得FQ= t,再通過得△FQH∽△FHD得到 t: =( ﹣2t): ;當以P、M、N、F為頂點的四邊形是菱形,且FM為菱形對角線,NP與MF相交于K,如圖3,利用菱形的性質(zhì)得FK= ﹣2t),再通過△FKN∽△FHD得到 ﹣2t): = t: ;當以P、M、N、F為頂點的四邊形是矩形,且∠NMF=90°,通過△FMN∽△FHD得到( ﹣2t): = t: ;當以P、M、N、F為頂點的四邊形是矩形,且∠MNF=90°,通過△FNM∽△FHD得到( ﹣2t): = t: ,然后分別解關(guān)于t的方程可確定滿足條件的t的值.
【考點精析】通過靈活運用二次函數(shù)的圖象和二次函數(shù)的性質(zhì),掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某教學活動小組選定測量山頂鐵塔AE的高,他們在30m高的樓CD的底部點D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角為36°52′.若小山高BE=62m,樓的底部D與山腳在同一水平面上,求鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當陽光與水平線成45°角時,測得鐵塔AB落在斜坡上 的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABD=∠CBD=60°,AC與BD相交于點E,過點C作⊙O的切線,與AB的延長線相交于點F.
(1)判斷△ACD的形狀,并加以證明
(2)若CF=2,DE=4,求弦CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知:矩形ABCD中,AC、BD是對角線,分別延長AD至E,延長CD至F,使得DE=AD,DF=CD.
(1)求證:四邊形ACEF為菱形.
(2)如圖2,過E作EG⊥AC的延長線于G,若AG=8,cos∠ECG= ,則AD= (直接填空)、

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙3人聚會,每人帶了一件禮物,將這3件禮物分別放在3個完全相同的盒子里,每人隨機抽取一個禮盒(裝有禮物的盒子)
(1)下列事件是必然事件的是 A 乙沒有抽到自己帶來的禮物B 乙恰好抽到自己帶來的禮物C 乙抽到一件禮物D 只有乙抽到自己帶來的禮物
(2)甲、乙、丙3人抽到的都不是自己帶來的禮物(記為事件A),請列出事件A的所有可能的結(jié)果,并求事件A的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進行下去,A10B10C10D10E10F10的邊長為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,AB<BC,已知∠B=30°,AB=,將△ABC沿AC翻折至△AB′C,使點B′落在ABCD所在的平面內(nèi),連接B′D.若△AB′D是直角三角形,則BC的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出四個結(jié)論:
①b2>4ac;②2a+b=0;③a+b+c>0;④若點B(﹣,y1)、C(﹣,y2)為函數(shù)圖象上的兩點,則y1<y2
其中正確結(jié)論是( 。

A.②④
B.①④
C.①③
D.②③

查看答案和解析>>

同步練習冊答案