【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)是(4,0),并且OA=OC=4OB,動(dòng)點(diǎn)P在過(guò)A,BC三點(diǎn)的拋物線上.

1)求拋物線的解析式;

2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;

3)過(guò)動(dòng)點(diǎn)PPE垂直于y軸于點(diǎn)E,交直線AC于點(diǎn)D,過(guò)點(diǎn)Dx軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).

【答案】1B(-1,0);C0,4);;(2P2,6);(3)點(diǎn)

【解析】

試題(1)根據(jù)A的坐標(biāo),即可求得OA的長(zhǎng),則BC的坐標(biāo)即可求得,然后利用待定系數(shù)法即可求得函數(shù)的解析式;

2)分點(diǎn)A為直角頂點(diǎn)時(shí),和C的直角頂點(diǎn)兩種情況討論,根據(jù)OA=OC,即可列方程求解;

3)據(jù)垂線段最短,可得當(dāng)OD⊥AC時(shí),OD最短,即EF最短,根據(jù)等腰三角形的性質(zhì),DAC的中點(diǎn),則DF=OC,即可求得P的縱坐標(biāo),代入二次函數(shù)的解析式,即可求得橫坐標(biāo),得到P的坐標(biāo).

解:(1)由A40),可知OA=4

∵OA=OC=4OB,

∴OA=OC=4OB=1,

∴C0,4),B﹣1,0).

設(shè)拋物線的解析式是y=ax2+bx+c,

,

解得:,

則拋物線的解析式是:y=﹣x2+3x+4;

2)存在.

第一種情況,當(dāng)以C為直角頂點(diǎn)時(shí),過(guò)點(diǎn)CCP1⊥AC,交拋物線于點(diǎn)P1.過(guò)點(diǎn)P1y軸的垂線,垂足是M

∵∠ACP1=90°,

∴∠MCP1+∠ACO=90°

∵∠ACO+∠OAC=90°,

∴∠MCP1=∠OAC

∵OA=OC

∴∠MCP1=∠OAC=45°

∴∠MCP1=∠MP1C,

∴MC=MP1,

設(shè)Pm,﹣m2+3m+4),

m=﹣m2+3m+4﹣4,

解得:m1=0(舍去),m2=2

∴﹣m2+3m+4=6,

P2,6).

第二種情況,當(dāng)點(diǎn)A為直角頂點(diǎn)時(shí):過(guò)AAP2,交拋物線于點(diǎn)P2,過(guò)點(diǎn)P2y軸的垂線,垂足是N,AP2y軸于點(diǎn)F

∴P2N∥x軸,

∠CAO=45°

∴∠OAP2=45°,

∴∠FP2N=45°,AO=OF

∴P2N=NF,

設(shè)P2n,﹣n2+3n+4),

n=﹣n2+3n+4+4

解得:n1=﹣2,n2=4(舍去),

∴﹣n2+3n+4=﹣6,

P2的坐標(biāo)是(﹣2,﹣6).

綜上所述,P的坐標(biāo)是(2,6)或(﹣2,﹣6);

3)連接OD,由題意可知,四邊形OFDE是矩形,則OD=EF

根據(jù)垂線段最短,可得當(dāng)OD⊥AC時(shí),OD最短,即EF最短.

由(1)可知,在直角△AOC中,OC=OA=4

根據(jù)等腰三角形的性質(zhì),DAC的中點(diǎn).

∵DF∥OC

∴DF=OC=2,

點(diǎn)P的縱坐標(biāo)是2

﹣x2+3x+4=2,

解得:x=,

當(dāng)EF最短時(shí),點(diǎn)P的坐標(biāo)是:(2)或(,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為、,點(diǎn)E的外接圓上一點(diǎn),BE交線段AC于點(diǎn)D,若,則點(diǎn)D的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行全員賽課比賽,八年級(jí)3位數(shù)學(xué)老師分別記為A,B,C,(其中A是女老師,B,C是男老師)被安排在星期二下午三節(jié)上,他們通過(guò)抽簽決定上課順序。

1)女老師A不希望上第一節(jié)課,卻偏偏抽到上第一節(jié)課的概率是

2)試用畫(huà)樹(shù)狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求女老師A比男老師B先上課的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道不等式的兩邊加(或減)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變.不等式組是否也具有類似的性質(zhì)呢?請(qǐng)解答下列問(wèn)題.

1)完成下列填空:

已知

用“<”或“>”填空

5+2_____3+1

31_____52

12_____4+1

2)一般地,如果那么a+c_____b+d(用“<”或“>”填空).請(qǐng)你說(shuō)明上述性質(zhì)的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形紙片中,對(duì)角線交于點(diǎn),折疊正方形紙片,使落在上,點(diǎn)恰好與上的點(diǎn)重合.展開(kāi)后,折痕分別交、于點(diǎn)、.連接.下列結(jié)論:①;②;③;④四邊形是菱形;⑤

其中正確結(jié)論的序號(hào)是(  。

A. ①②③④⑤B. ①②③④C. ①③④⑤D. ①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小方與小輝在玩軍棋游戲,他們定義了一種新的規(guī)則,用軍棋中的工兵、連長(zhǎng)、地雷比較大小,共有6個(gè)棋子,分別為1個(gè)工兵,2個(gè)連長(zhǎng),3個(gè)地雷游戲規(guī)則如下:①游戲時(shí),將棋反面朝上,兩人隨機(jī)各摸一個(gè)棋子進(jìn)行比賽,先摸者摸出的棋不放回;②工兵地雷地雷連長(zhǎng),連長(zhǎng)工兵;③相同棋子不分勝負(fù).

1)若小方先摸,則小方摸到排長(zhǎng)的事件是 ;若小方先摸到了連長(zhǎng),小輝在剩余的5個(gè)棋子中隨機(jī)摸一個(gè),則這一輪中小方勝小輝的概率為

2)如果先拿走一個(gè)連長(zhǎng),在剩余的5個(gè)棋子中小方先摸一個(gè)棋子,然后小輝在剩余的4個(gè)棋子中隨機(jī)摸一個(gè),求這一輪中小方獲勝的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,點(diǎn)A到直線BC的距離為d,ABACd,以A為圓心,AC為半徑畫(huà)圓弧,圓弧交直線BC于點(diǎn)D,過(guò)點(diǎn)DDEAC交直線AB于點(diǎn)E,若BC=4,DE=1,∠EDA=ACD,則AD=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=2x與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)A(4,n),ABx軸,垂足為B.

(1)求k的值;

(2)點(diǎn)CAB上,若OC=AC,求AC的長(zhǎng);

(3)點(diǎn)Dx軸正半軸上一點(diǎn),在(2)的條件下,若SOCD=SACD,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家以、兩種原料,利用不同的工藝手法生產(chǎn)出了甲、乙、丙三種袋裝產(chǎn)品,其中,甲產(chǎn)品每袋含千克原料、千克原料;乙產(chǎn)品每袋含千克原料、千克原料;丙產(chǎn)品每袋含有千克原料、千克原料.若丙產(chǎn)品每袋售價(jià)元,則利潤(rùn)率為.某節(jié)慶日,該電商進(jìn)行促銷活動(dòng),將甲、乙、丙各一袋合裝成禮品盒,每購(gòu)買一個(gè)禮品盒可免費(fèi)贈(zèng)送一袋乙產(chǎn)品,這樣即可實(shí)現(xiàn)利潤(rùn)率為,則禮盒售價(jià)為_____元.

查看答案和解析>>

同步練習(xí)冊(cè)答案