如圖,△ABC內(nèi)接于⊙O,OD⊥BC于D,∠A=50°,則∠OCD的度數(shù)是( )
A.40°
B.45°
C.50°
D.60°
【答案】分析:首先連接OB,由在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半,即可求得∠BOC的度數(shù),又由OB=OC,根據(jù)等邊對等角的性質(zhì),即可求得∠OCD的度數(shù).
解答:解:連接OB,
∵∠A=50°,
∴∠BOC=2∠A=100°,
∵OB=OC,
∴∠OCD=∠OBC==40°.
故選A.
點評:此題考查了圓周角定理與等腰三角形的性質(zhì).此題難度不大,注意掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半定理的應用,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

15、如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC=4.BD為⊙O的直徑,則BD=
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,點D在AB的延長線上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)證明:△AOC≌△DBC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,△ABC內(nèi)接于⊙O,連接AO并延長交BC于點D,若AO=5,BC=8,∠ADB=90°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,△ABC內(nèi)接于⊙O,∠A=30°,若BC=4cm,則⊙O的直徑為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC內(nèi)接于⊙O,AD⊥BC于點D,求證:∠BAD=∠CAO.

查看答案和解析>>

同步練習冊答案