【題目】如圖,在ABCD中,AC、BD相交于點O,EFBD上,且BEDF

AE、CF

1)求證△AOE≌△COF

2)若ACEF,連接AF、CE,判斷四邊形AECF的形狀,并說明理由.

【答案】見解析

【解析】分析:(1)由平行四邊形的性質(zhì)可得,OB=OD,OA=OC,再由OB-BE=OD-DF,得到OE=OF,又∠AOE=∠COF,可得△AOE≌△COF;(2)利用對角線互相垂直的平行四邊形是菱形判定即可.

詳解:(1)證明:∵四邊形ABCD是平行四邊形,

OBODOAOC

BEDF,

OBBEODDF

OEOF

又∠AOE=∠COF,

∴△AOE≌△COF

(2)解:四邊形AECF是菱形.

理由如下:

OAOC,OEOF

∴四邊形AECF是平行四邊形.

ACEF,

∴四邊形AECF是菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線y=﹣xx﹣2)(0≤x≤2)記為C1,它與x軸交于兩點OA1C1A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進行下去,直至得到C6若點P(11,m)在第6段拋物線C6,m=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將平行四邊形ABCD沿對角線BD進行折疊,折疊后點C落在點F處,DFAB于點E

1)求證:;

2)判斷AFBD是否平行,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,兩點在數(shù)軸上,點對應的數(shù)為-15,,兩點分別從點同時出發(fā),沿數(shù)軸正方向勻速運動,速度分別為每秒3個單位長度和每秒2個單位長度.

1)數(shù)軸上點對應的數(shù)是

2)經(jīng)過多少秒時,兩點分別到原點的距離相等?

3)當兩點分別到點的距離相等時,在數(shù)軸上點對應的數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019年春季環(huán)境整治活動中,某社區(qū)計劃對面積為的區(qū)域進行綠化.經(jīng)投標,由甲、乙兩個工程隊來完成,若甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為區(qū)域的綠化時,甲隊比乙隊少用5.

1)求甲、乙兩工程隊每天能完成綠化的面積;

2)設甲工程隊施工天,乙工程隊施工天,剛好完成綠化任務,求關于的函數(shù)關系式;

3)在(2)的條件下,若甲隊每天綠化費用是0.6萬元,乙隊每天綠化費用為0.25萬元,且甲乙兩隊施工的總天數(shù)不超過25天,則如何安排甲乙兩隊施工的天數(shù),使施工總費用最低?并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知兩個角的角平分線相交于點

1)如圖1,若,求的度數(shù).

2)如圖2,若,試寫出之間的數(shù)量關系并證明你的結(jié)論.

3)若,請直接用含有,的代數(shù)式表示出

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ADBC,∠A=∠C50°,線段AD上從左到右依次有兩點E、F(不與A、D重合)

1ABCD是什么位置關系,并說明理由;

2)觀察比較∠1、∠2、∠3的大小,并說明你的結(jié)論的正確性;

3)若∠FBD:∠CBD14,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度數(shù),判斷BEAD是何種位置關系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果A、B、C三點在同一直線上,且線段AB=6 cm,BC=4 cm,若M,N分別為ABBC的中點,那么M,N兩點之間的距離為( )

A. 5 cm B. 1 cm C. 51 cm D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019101日,中華人民共和國成立70周年,成都市民通過各種方式觀看了國慶閱兵直播.武侯區(qū)某街道辦為了解居民的“觀看方式”和 “最喜歡的分列式方隊”的情況,隨機調(diào)查了本街道部分居民(每位被調(diào)查者需完成以上兩個方面的問題),并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖,其中通過“電視端“方式觀看的居民有320人.

請根據(jù)以上信息,解答下列問題:

1)求本次隨機調(diào)查的總?cè)藬?shù);

2)請補全條形統(tǒng)計圖;

3)若武侯區(qū)該街道居民約有60000人,試估計其中最喜歡護旗方隊的人數(shù).

查看答案和解析>>

同步練習冊答案