1、已知拋物線y=ax2+bx+c的圖象頂點(diǎn)為(-2,3),且過(-1,5),則拋物線的表達(dá)式為
y=2x2+8x+11
分析:拋物線y=ax2+bx+c的圖象頂點(diǎn)為(-2,3),因而可以設(shè)函數(shù)的解析式是:y=a(x+2)2+3,又因?yàn)楹瘮?shù)經(jīng)過點(diǎn)(-1,5),代入拋物線中就可以求出函數(shù)的解析式.
解答:解:設(shè)函數(shù)的解析式是:y=a(x+2)2+3,把(-1,5),代入解析式得到a=2,
因而解析式是:y=2(x+2)2+3即y=2x2+8x+11.
點(diǎn)評:當(dāng)已知函數(shù)的頂點(diǎn)坐標(biāo),或已知函數(shù)對稱軸時(shí),利用頂點(diǎn)式求解析式比較簡單;當(dāng)已知圖象經(jīng)過的三點(diǎn)時(shí),一般利用一般式求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點(diǎn),且精英家教網(wǎng)與x軸的另一個(gè)交點(diǎn)為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點(diǎn)D的坐標(biāo)和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點(diǎn)是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點(diǎn)坐標(biāo)為(2,-3),那么該拋物線有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點(diǎn)P在x軸上,與y軸交于點(diǎn)Q,過坐標(biāo)原點(diǎn)O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點(diǎn)B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點(diǎn)B,且于該拋物線交于另一點(diǎn)C(
ca
,b+8
),求當(dāng)x≥1時(shí)y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案