【題目】我們知道多項式的乘法可以利用圖形的面積進行解釋,例如,(2a+b)(a+b)=2a2+3ab+b2就能用圖1或圖2等圖形的面積表示:

(1)請你寫出圖3所表示的一個等式:          .

(2)試畫出一個圖形,使它的面積能表示成(a+b)(a+3b)=a2+4ab+3b2.

1      2      3

【答案】1)(a+2b)(2a+b=2a2+5ab+2b2 2)見解析

【解析】

試題(1)由題意得:長方形的面積=×寬,即可將長和寬的表達式代入,再進行多項式的乘法,即可得出等式;

2)已知圖形面積的表達式,即可根據(jù)表達式得出圖形的長和寬的表達式,即可畫出圖形.

解:(1長方形的面積=×寬,

3的面積=a+2b)(2a+b=2a2+5ab+2b2,

故圖3所表示的一個等式:(a+2b)(2a+b=2a2+5ab+2b2,

故答案為:(a+2b)(2a+b=2a2+5ab+2b2

2圖形面積為:(a+b)(a+3b=a2+4ab+3b2,

長方形的面積=×=a+b)(a+3b),

由此可畫出的圖形為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,我東海艦隊的一艘軍艦在海面A處巡邏時發(fā)現(xiàn)一艘不明國籍的船只在C處游弋,立即通知在B處的另一艘軍艦一起向其包抄,此時B在A的南偏西30°方向,我兩艘軍艦分別測得C在A的南偏東75°方向和C在B的北偏東75°方向,已知A,B之間的距離是30海里,求此刻我兩艘軍艦所在地A,B與C的距離.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某商品的標志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A,B,C,D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為(
A.5πcm2
B.10πcm2
C.15πcm2
D.20πcm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結論__________(填編號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,E在正方形ABCD內(nèi),對角線AC上有一點P使PE+PD的和最小,這個最小值為( )

A. B. C. 3 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,剪兩張對邊平行的紙條,隨意交叉疊放在一起,轉動其中的一張,重合的部分構成了一個四邊形,這個四邊形是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一列快車從甲地駛往乙地,一列特快車從乙地駛往甲地,快車的速度為100千米/小時,特快車的速度為150千米/小時,甲、乙兩地之間的距離為1000千米,兩車同時出發(fā),則圖中折線大致表示兩車之間的距離y(千米)與快車行駛時間(小時)之間的函數(shù)圖象是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A.B 的對應點C,D,連接AC,BD,CD.

(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABDC

(2) y軸上是否存在一點P,連接PA,PB,使S三角形PAB=S四邊形ABDC?若存在這樣一點,求出點P的坐標;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】空氣質(zhì)量狀況已引起全社會的廣泛關注,某市統(tǒng)計了去年每月空氣質(zhì)量達到良好以上的天數(shù),整理后制成如圖所示的折線統(tǒng)計圖和扇形統(tǒng)計圖.根據(jù)以上信息解答下列問題:該市去年空氣質(zhì)量連續(xù)提升的月份范圍是____;扇形統(tǒng)計圖中扇形A的圓心角的度數(shù)為____

    

查看答案和解析>>

同步練習冊答案