【題目】我們知道多項式的乘法可以利用圖形的面積進行解釋,例如,(2a+b)(a+b)=2a2+3ab+b2就能用圖1或圖2等圖形的面積表示:
(1)請你寫出圖3所表示的一個等式: .
(2)試畫出一個圖形,使它的面積能表示成(a+b)(a+3b)=a2+4ab+3b2.
圖1 圖2 圖3
【答案】(1)(a+2b)(2a+b)=2a2+5ab+2b2 (2)見解析
【解析】
試題(1)由題意得:長方形的面積=長×寬,即可將長和寬的表達式代入,再進行多項式的乘法,即可得出等式;
(2)已知圖形面積的表達式,即可根據(jù)表達式得出圖形的長和寬的表達式,即可畫出圖形.
解:(1)∵長方形的面積=長×寬,
∴圖3的面積=(a+2b)(2a+b)=2a2+5ab+2b2,
故圖3所表示的一個等式:(a+2b)(2a+b)=2a2+5ab+2b2,
故答案為:(a+2b)(2a+b)=2a2+5ab+2b2;
(2)∵圖形面積為:(a+b)(a+3b)=a2+4ab+3b2,
∴長方形的面積=長×寬=(a+b)(a+3b),
由此可畫出的圖形為:
科目:初中數(shù)學 來源: 題型:
【題目】如圖,我東海艦隊的一艘軍艦在海面A處巡邏時發(fā)現(xiàn)一艘不明國籍的船只在C處游弋,立即通知在B處的另一艘軍艦一起向其包抄,此時B在A的南偏西30°方向,我兩艘軍艦分別測得C在A的南偏東75°方向和C在B的北偏東75°方向,已知A,B之間的距離是30海里,求此刻我兩艘軍艦所在地A,B與C的距離.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某商品的標志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A,B,C,D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為( )
A.5πcm2
B.10πcm2
C.15πcm2
D.20πcm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結論__________(填編號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,點E在正方形ABCD內(nèi),對角線AC上有一點P使PE+PD的和最小,這個最小值為( )
A. B. C. 3 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列特快車從乙地駛往甲地,快車的速度為100千米/小時,特快車的速度為150千米/小時,甲、乙兩地之間的距離為1000千米,兩車同時出發(fā),則圖中折線大致表示兩車之間的距離y(千米)與快車行駛時間(小時)之間的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(﹣1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,.B 的對應點C,D,連接AC,BD,CD.
(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABDC;
(2) 在y軸上是否存在一點P,連接PA,PB,使S三角形PAB=S四邊形ABDC?若存在這樣一點,求出點P的坐標;若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】空氣質(zhì)量狀況已引起全社會的廣泛關注,某市統(tǒng)計了去年每月空氣質(zhì)量達到良好以上的天數(shù),整理后制成如圖所示的折線統(tǒng)計圖和扇形統(tǒng)計圖.根據(jù)以上信息解答下列問題:該市去年空氣質(zhì)量連續(xù)提升的月份范圍是____;扇形統(tǒng)計圖中扇形A的圓心角的度數(shù)為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com