【題目】某工廠計劃生產(chǎn)A,B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤如下表:
A種產(chǎn)品 | B種產(chǎn)品 | |
成本(萬元/件) | 2 | 5 |
利潤(萬元/件) | 1 | 3 |
(1)若工廠計劃獲利14萬元,問A,B兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?
(2)若工廠計劃投入資金不多于44萬元,且獲利多于14萬元,問工廠有哪幾種生產(chǎn)方案?
(3)在(2)的條件下,哪種生產(chǎn)方案獲利最大?并求出最大利潤.
【答案】
(1)解:設(shè)生產(chǎn)A種產(chǎn)品x件,則生產(chǎn)B種產(chǎn)品(10﹣x)件,于是有
x+3(10﹣x)=14,
解得:x=8,
則10﹣x=10﹣8=2(件)
所以應(yīng)生產(chǎn)A種產(chǎn)品8件,B種產(chǎn)品2件;
(2)解:設(shè)應(yīng)生產(chǎn)A種產(chǎn)品x件,則生產(chǎn)B種產(chǎn)品有(10﹣x)件,由題意有:
,
解得:2≤x<8;
所以可以采用的方案有: , , , , , ,共6種方案;
(3)解:設(shè)總利潤為y萬元,生產(chǎn)A種產(chǎn)品x件,則生產(chǎn)B種產(chǎn)品(10﹣x)件,
則利潤y=x+3(10﹣x)=﹣2x+30,
則y隨x的增大而減小,即可得,A產(chǎn)品生產(chǎn)越少,獲利越大,
所以當(dāng) 時可獲得最大利潤,其最大利潤為2×1+8×3=26萬元.
【解析】(1)設(shè)生產(chǎn)A種產(chǎn)品x件,則生產(chǎn)B種產(chǎn)品有(10﹣x)件,根據(jù)計劃獲利14萬元,即兩種產(chǎn)品共獲利14萬元,即可列方程求解;(2)根據(jù)計劃投入資金不多于44萬元,且獲利多于14萬元,這兩個不等關(guān)系即可列出不等式組,求得x的范圍,再根據(jù)x是非負(fù)整數(shù),確定x的值,x的值的個數(shù)就是方案的個數(shù);(3)得出利潤y與A產(chǎn)品數(shù)量x的函數(shù)關(guān)系式,根據(jù)增減性可得,B產(chǎn)品生產(chǎn)越多,獲利越大,因而B取最大值時,獲利最大,據(jù)此即可求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用語言敘述代數(shù)式a2-b2 , 正確的是( )
A.a , b兩數(shù)的平方差
B.a與b差的平方
C.a與b的平方的差
D.b , a兩數(shù)的平方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織了一次G20知識競賽活動,根據(jù)獲獎同學(xué)在競賽中的成績制成的統(tǒng)計圖表如下,仔細(xì)閱讀圖表解答問題:
(1)求出表中a,b,c的數(shù)值,并補(bǔ)全頻數(shù)分布直方圖;
(2)獲獎成績的中位數(shù)落在哪個分?jǐn)?shù)段?
(3)估算全體獲獎同學(xué)成績的平均分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知OC是∠AOB內(nèi)部的一條射線,∠AOC=30°,OE是∠COB的平分線.當(dāng)∠COE=40°時,求∠AOB的度數(shù).
解:∵OE是∠COB的平分線,
∴∠COB=________(理由:________).
∵∠COE=40°,
∴________.
∵∠AOC=________,
∴∠AOB=∠AOC+________=110°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(1,1)位于( 。
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com