【題目】如圖,河壩橫斷面背水坡AB的坡角是45°,背水坡AB長度為20 米,現(xiàn)在為加固堤壩,將斜坡AB改成坡度為1:2的斜坡AD【備注:AC⊥CB】
(1)求加固部分即△ABD的橫截面的面積;
(2)若該堤壩的長度為100米,某工程隊承包了這一加固的土石方工程,為搶在在汛期到來之際提前完成這一工程,現(xiàn)在每天完成的土方比原計劃增加25%,這樣實際比原計劃提前10天完成了,求原計劃每天完成的土方.【提示土石方=橫截面x堤壩長度】

【答案】
(1)解:由題意可知∠ABC=45°,AB=20 ,AC:CD=1:2,

∵∠ABC=45° AB=20

∴AC=BC=20.

∵AC:CD=1:2,

∴CD=40,BD=20,

∴△ABD的面積=200


(2)解:堤壩的土石方總量=100x200=20000.

設(shè)原計劃每天完成的土方為x立方,則實際每天完成的土石方為(1+25%)x,

由題意可得: =10,

解得 x=400.

經(jīng)檢驗x=400是原方程的解.

答:原計劃每天完成的土方為400立方米


【解析】(1)在直角△ABC中,首先求得AC的長,根據(jù)坡度的定義求得CD的長,進而求的BD的長,然后利用三角形的面積公式求解;(2)設(shè)原計劃每天完成的土方為x立方,則實際每天完成的土石方為(1+25%)x,然后根據(jù)每天完成的土方比原計劃增加25%,這樣實際比原計劃提前10天完成即可列方程求解.
【考點精析】解答此題的關(guān)鍵在于理解分式方程的應用的相關(guān)知識,掌握列分式方程解應用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗根、寫出答案(要有單位).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】我市某工藝廠為配合北京奧運,設(shè)計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價x(元/件)

30

40

50

60

每天銷售量y(件)

500

400

300

200


(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價﹣成本總價)
(3)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC,若CE=5,則BC等于( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一些相同的“○”按如圖所示的規(guī)律依次擺放,觀察每個“稻草人”中的“○”的個數(shù),則第20個“稻草人”中有個“○”.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=AC,Ac上的中線BD把ABC的周長分為24cm30cm兩部分。求三角形的三邊長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級(1)班的全體同學根據(jù)自己的興趣愛好參加了六個學生社團(每個學生必須參加且只參加一個),為了了解學生參加社團的情況,學生會對該班參加各個社團的人數(shù)進行了統(tǒng)計,繪制成了如圖不完整的扇形統(tǒng)計圖,已知參加“讀書社”的學生有10人,請解答下列問題:
(1)該班的學生共有名;該班參加“愛心社”的人數(shù)為名,若該班參加“吉他社”與“街舞社”的人數(shù)相同,則“吉他社”對應扇形的圓心角的度數(shù)為
(2)一班學生甲、乙、丙是“愛心社”的優(yōu)秀社員,現(xiàn)要從這三名學生中隨機選兩名學生參加“社區(qū)義工”活動,請你用畫樹狀圖或列表的方法求出恰好選中甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊形如“Z”字形的鐵皮,每個角都是直角,且 AB=BC=EF=GF=1, CD=DE=GH=AH=3,現(xiàn)將鐵片裁剪并拼接成一個和它等面積的正方形,則正方形的邊長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 經(jīng)過點 ,交y 軸于點C:

(1)求拋物線的解析式(用一般式表示).
(2)點 軸右側(cè)拋物線上一點,是否存在點 使 ,若存在請直接給出點 坐標;若不存在請說明理由.
(3)將直線 繞點 順時針旋轉(zhuǎn) ,與拋物線交于另一點 ,求 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AD平分∠BAC,AD=4,CD=2,AC=2,△ABD的面積是_______________.

查看答案和解析>>

同步練習冊答案