如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y(k>0)經(jīng)過邊OB的中點(diǎn)C和AE的中點(diǎn)D.已知等邊△OAB的邊長(zhǎng)為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長(zhǎng).
解:(1)過點(diǎn)C作CG⊥OA于點(diǎn)G,
∵點(diǎn)C是等邊△OAB的邊OB的中點(diǎn),
∴OC=2,∠ AOB=60°,
∴OG=1,CG=
∴點(diǎn)C的坐標(biāo)是(1,),
,得:k,
∴該雙曲線所表示的函數(shù)解析式為y;
(2)過點(diǎn)D作DH⊥AF于點(diǎn)H,設(shè)AH=a,則DH=a
∴點(diǎn)D的坐標(biāo)為(4+a,),
∵點(diǎn)D是雙曲線y上的點(diǎn),
xy,得(4+a)=,
即:a2+4a﹣1=0,
解得:a1﹣2,a2=﹣﹣2(舍去),
∴AD=2AH=2﹣4,
∴等邊△AEF的邊長(zhǎng)是2AD=4﹣8.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•麗水)如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=
kx
(k>0)經(jīng)過邊OB的中點(diǎn)C和AE的中點(diǎn)D.已知等邊△OAB的邊長(zhǎng)為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y= (k>0)經(jīng)過邊OB的中點(diǎn)C和AE的中點(diǎn)D.已知等邊△OAB的邊長(zhǎng)為4.

(1)求該雙曲線所表示的函數(shù)解析式;

(2)求等邊△AEF的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省杭州市蕭山區(qū)瓜瀝一中九年級(jí)(上)月考數(shù)學(xué)試卷(10月份)(解析版) 題型:解答題

如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=(k>0)經(jīng)過邊OB的中點(diǎn)C和AE的中點(diǎn)D.已知等邊△OAB的邊長(zhǎng)為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙教版九年級(jí)(上)第一次月考數(shù)學(xué)試卷(六)(解析版) 題型:解答題

如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=(k>0)經(jīng)過邊OB的中點(diǎn)C和AE的中點(diǎn)D.已知等邊△OAB的邊長(zhǎng)為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年四川省瀘州市藍(lán)田中學(xué)中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=(k>0)經(jīng)過邊OB的中點(diǎn)C和AE的中點(diǎn)D.已知等邊△OAB的邊長(zhǎng)為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案