精英家教網 > 初中數學 > 題目詳情

問題背景:如圖1,四邊形ABCD和CEFG都是正方形,B,C,E在同一條直線上,連接BG,DE.
問題探究:
(1)①如圖1所示,當G在CD邊上時,猜想線段BG、DE的數量關系及所在直線的位置關系.(不要求證明)
②將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉任意角度α,得到如圖2,如圖3情形.請你通過觀察、測量等方法判斷①中得到的結論是否仍然成立,請選擇圖2或圖3證明你的判斷.
類比研究:
(2)若將原題中的“正方形”改為“矩形”(如圖所示),且數學公式=k(其中k>0),請直接寫出線段BG、DE的數量關系及位置關系.請選擇圖5或圖6證明你的判斷.
拓展應用:
(3)在(1)中圖2中,連接DG、BE,若AB=3,EF=2,求BE2+DG2的值.

解;(1)①BG=DE,BG⊥DE;
②仍然成立,選擇圖2證明如下:
證明:∵四邊形ABCD、CEFG都是正方形;
∴BC=CD,CG=CE,∠BCD=∠ECG,
∴∠BCG=∠DCE,
∴△BCG≌△DCE(SAS),
∴BG=DE,∠CBG=∠CDE,
又∵∠BHC=∠DHO,∠CBG+∠BHC=90°,
∴∠CDE+∠DHO=90°,
∴∠DOH=90°,
∴BG⊥DE;

(2)BG⊥DE,=k,
如圖5,
證明:
∵四邊形ABCD,CEFG都是矩形,且==k,
==k,∠BCD=∠ECG=90°,
∴∠BCG=∠DCE,
∴△BCG∽△DCE,
∴∠CBG=∠CDE,=k,
又∵∠BHC=∠DHO,∠CBG+∠BHC=90°,
∴∠CDE+∠DHO=90°,
∴∠DOH=90°,
∴BG⊥DE;

(3)∵BG⊥DE,
∴BE2+DG2=OB2+OE2+OG2+OD2=BD2+GE2
又∵AB=3,CE=2,
∴BD=3,GE=2,
∴BD2+GE2=(32+(22=26,
∴BE2+DG2=26.
分析:(1)①利用三角形全等的判定即可得出BG=DE,再利用對應角關系得出即可;
②利用三角形全等的判定即可得出BG=DE,再利用對應角關系得出即可;
(2)利用相似三角形的判定得出△BCG∽△DCE,進而得出即可;
(3)利用勾股定理得出BE2+DG2=OB2+OE2+OG2+OD2=BD2+GE2,進而得出答案即可.
點評:此題主要考查了全等三角形的判定以及相似三角形的判定與性質和勾股定理的應用,熟練利用相似三角形的性質得出是解題關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

問題背景  某課外學習小組在一次學習研討中,得到如下兩個命題:
①如圖1,O是正三角形ABC的中心,∠MON分別與AB、BC交于點P,Q,若∠MON=120°,則四邊形OPBQ的面積等于三角形ABC面積的三分之一.
②如圖2,O是正方形ABCD的中心,∠MON分別與AB、BC交于點P,Q,若∠MON=90°,則四邊形OPBQ的面積等于正方形ABCD面積的四分之一.
然后運用類比的思想提出了如下的命題:
③如圖3,O是正五邊形ABCDE的中心,∠MON分別與AB、BC交于點P,Q,若∠MON=72°,則四邊形OPBQ的面積等于五邊形ABCDE面積的五分之一.
任務要求
(1)請你從①、②、③三個命題中選擇一個進行證明;
(2)請你繼續(xù)完成下面的探索:
如圖4,在正n(n≥3)邊形ABCDEF…中,O是中心,∠MON分別與AB、BC交于點P,Q,若∠MON 等于多少度時,則四邊形OPBQ的面積等于正n邊形ABCDE…面積的n分之一?(不要求證明)
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

問題背景  在△ABC中,∠B=2∠C,點D為線段BC上一動點,當AD滿足某種條件時,探討在線段AB、BD、CD、AC四條線段中,某兩條或某三條線段之間存在的數量關系.
例如:在圖1中,當AB=AD時,可證得AB=DC,現(xiàn)在繼續(xù)探索:
任務要求:
(1)當AD⊥BC時,如圖2,求證:AB+BD=DC;
(2)當AD是∠BAC的角平分線時,判斷AB、BD、AC的數量關系,并證明你的結精英家教網論.

查看答案和解析>>

科目:初中數學 來源:湖北省咸寧市2010年中考數學試卷 題型:059

問題背景

(1)如圖,△ABC中,DEBC分別交AB,ACD,E兩點,過點EEFABBC于點F.請按圖示數據填空:

四邊形DBFE的面積S=________,

EFC的面積S1=________,

ADE的面積S2=________.

探究發(fā)現(xiàn)

(2)在(1)中,若BF=a,F(xiàn)C=b,DEBC間的距離為h.請證明S2=4S1S2

拓展遷移

(3)如圖,□DEFG的四個頂點在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試利用(2)中的結論求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源:2012屆江蘇省江陰市石莊中學九年級中考模擬考試數學試卷(帶解析) 題型:解答題

問題背景:
如圖1,矩形鐵片ABCD的長為2a,寬為a; 為了要讓鐵片能穿過直徑為的圓孔,需對鐵片進行處理(規(guī)定鐵片與圓孔有接觸時鐵片不能穿過圓孔);

探究發(fā)現(xiàn):
【小題1】如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點,若將矩形鐵片的四個角去掉,只余下四邊形MNPQ,則此時鐵片的形狀是 _______,給出證明,并通過計算說明此時鐵片都能穿過圓孔;

拓展遷移:
【小題2】如圖3,過矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點E、F(不與端點重合),沿著這條直線將矩形 鐵片切割成兩個全等的直角梯形鐵片;
 
①當BE=DF=時,判斷直角梯形鐵片EBAF能否穿過圓孔,并說明理由;
②為了能使直角梯形鐵片EBAF順利穿過圓孔,請直接寫出線段BE的長度的取值范圍 .

查看答案和解析>>

科目:初中數學 來源:2013屆江蘇省贛榆縣羅陽中學九年級4月質量檢測(一)數學試卷(帶解析) 題型:解答題

問題背景
(1)如圖1,△ABC中,DEBC分別交AB,ACDE兩點,過點EEFABBC于點F.請按圖示數據填空:四邊形DBFE的面積     ,△EFC的面積     ,△ADE的面積     

探究發(fā)現(xiàn)
(2)在(1)中,若,DEBC間的距離為.請證明
拓展遷移
(3)如圖2,□DEFG的四個頂點在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試利用(2)中的結論求△ABC的面積.

查看答案和解析>>

同步練習冊答案