如圖,已知∠AOB=120°,∠COD是∠AOB內(nèi)的一個(gè)角,OE是∠AOC的平分線(xiàn),OF是∠BOD的平分線(xiàn).
(1)如果∠AOE=20°,∠BOF=25°,那么∠COD是多少度?
(2)如果∠COD=40°,那么能否求出∠EOF的大小?若能,則求出∠EOF的度數(shù);若不能,請(qǐng)說(shuō)明理由.
分析:(1)根據(jù)角平分線(xiàn)定義得出∠BOD=2∠BOF,∠AOC=2∠AOE,求出∠BOD和∠AOC,代入∠COD=∠AOB-∠BOD-∠AOC求出即可;
(2)求出∠AOC+∠BOD,求出∠DOF+∠COE=
1
2
(∠AOC+∠BOD),代入∠EOF=∠DOF+∠COE+∠COD求出即可.
解答:解:(1)∵OE是∠AOC的平分線(xiàn),OF是∠BOD的平分線(xiàn),
∴∠BOD=2∠BOF,∠AOC=2∠AOE,
∵∠AOE=20°,∠BOF=25°,
∴∠BOD=50°,∠AOC=40°,
∵∠AOB=120°,
∴∠COD=∠AOB-∠BOD-∠AOC=30°;

(2)能求出∠EOF的大小,
理由是:∵∠AOB=120°,∠COD=40°,
∴∠AOC+∠BOD=∠AOB-∠COD=80°,
∵OE是∠AOC的平分線(xiàn),OF是∠BOD的平分線(xiàn),
∴∠DOF=
1
2
∠BOD,∠COE=
1
2
∠AOC,
∴∠DOF+∠COE=
1
2
×80°=40°,
∴∠EOF=∠DOF+∠COE+∠COD=40°+40°=80°.
點(diǎn)評(píng):本題考查了角平分線(xiàn)定義和角的有關(guān)計(jì)算的應(yīng)用,主要考查學(xué)生的計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、(1)如圖,已知∠AOB和C、D兩點(diǎn),用直尺和圓規(guī)作一點(diǎn)P,使PC=PD,且P到OA、OB兩邊距離相等.

(2)用三角尺作圖在如圖的方格紙中,
①作△ABC關(guān)于直線(xiàn)l1對(duì)稱(chēng)的△A1B1C1;再作△A1B1C1關(guān)于直線(xiàn)l2對(duì)稱(chēng)的△A2B2C2;再作△A2B2C2關(guān)于直線(xiàn)l3對(duì)稱(chēng)的△A3B3C3
②△ABC與△A3B3C3成軸對(duì)稱(chēng)嗎?如果成,請(qǐng)畫(huà)出對(duì)稱(chēng)軸;如果不成,把△A3B3C3怎樣平移可以與△ABC成軸對(duì)稱(chēng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知∠AOB是直角,∠AOC是銳角,ON平分∠AOC,OM平分∠BOC,則∠MON是( 。精英家教網(wǎng)
A、45°
B、45°+
1
2
∠AOC
C、60°-
1
2
∠AOC
D、不能計(jì)算

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.
(1)求∠EOF的度數(shù);
(2)若∠AOC=x°,∠EOF=y°.則請(qǐng)用x的代數(shù)式來(lái)表示y;
(3)如果∠AOC+∠EOF=156°,則∠EOF是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

尺規(guī)作圖:
如圖,已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB(不用寫(xiě)作法,保留作圖痕跡).并證明你所作圖的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知∠AOB=x(0°<x<180°),OC平分∠AOB,點(diǎn)N為OB上一個(gè)定點(diǎn).通過(guò)畫(huà)圖可以知道:當(dāng)∠AOB=45°時(shí),在射線(xiàn)OC上存在點(diǎn)P,使△ONP成為等腰三角形,且符合條件的點(diǎn)有三個(gè),即P1(頂點(diǎn)為P2),P2(頂點(diǎn)為0),P3(頂點(diǎn)為N).
試問(wèn):當(dāng)∠AOB分別為銳角、直角、鈍角時(shí),在射線(xiàn)OC上使△ONP成為等腰三角形的點(diǎn)P是否仍然存在三個(gè)?請(qǐng)分別畫(huà)出簡(jiǎn)圖并加以說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案