【題目】如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象,有下列4個結論:①abc>0;②b>a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的是
【答案】③④
【解析】解:①∵拋物線的開口向下,對稱軸為x=1,拋物線與y軸的交點在y軸正半軸, ∴a<0,b=﹣2a>0,c>0,
∴abc<0,結論①不符合題意;②∵當x=1時,y>0,
∴a+b+c>0,
∴b>﹣a﹣c,結論②不符合題意;③∵拋物線的對稱軸為x=1,
∴當x=0與x=2時,y值相等.
∵拋物線與y軸的交點在y軸正半軸,
∴4a+2b+c=c>0,結論③符合題意;④∵拋物線與x軸有兩個不相等的實數(shù)根,
∴一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根,
∴△=b2﹣4ac>0,結論④符合題意.
所以答案是:③④.
【考點精析】關于本題考查的二次函數(shù)圖象以及系數(shù)a、b、c的關系,需要了解二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c)才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有三張分別標有數(shù)字1、2、6的卡片,它們除了數(shù)字外完全相同,把卡片背面朝上洗勻,從中任意抽取一張,將上面的數(shù)字記為a(不放回),再從中任意抽取一張,將上面的數(shù)字記為b,這樣的數(shù)字a,b能使關于x的一元二次方程x2﹣2(a﹣3)x﹣b2+9=0有兩個正根的概率為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=120°,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O逆時針旋轉至圖2,使一邊OM在∠BOC的內部,且恰好平分∠BOC,設ON的反向延長線為OD,則∠COD= °,∠AOD= °.
(2)將圖1中的三角板繞點O順時針旋轉至圖3,使ON在∠AOC的內部,求∠AOM﹣∠NOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】暑假期間,某學校計劃用彩色的地面磚鋪設教學樓門前一塊矩形操場ABCD的地面.已知這個矩形操場地面的長為100m,寬為80m,圖案設計如圖所示:操場的四角為小正方形,陰影部分為四個矩形,四個矩形的寬都為小正方形的邊長,在實際鋪設的過程總,陰影部分鋪紅色地面磚,其余部分鋪灰色地面磚.
(1)如果操場上鋪灰色地面磚的面積是鋪紅色地面磚面積的4倍,那么操場四角的每個小正方形邊長是多少米?
(2)如果灰色地面磚的價格為每平方米30元,紅色地面磚的價格為每平方米20元,學校現(xiàn)有15萬元資金,問這些資金是否能購買所需的全部地面磚?如果能購買所學的全部地面磚,則剩余資金是多少元?如果不能購買所需的全部地面磚,教育局還應該至少給學校解決多少資金?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進一種單價為40元的書包,如果以單價50元出售,那么每月可售出30個,根據(jù)銷售經驗,售價每提高5元,銷售量相應減少1個.
(1)請寫出銷售單價提高x元與總的銷售利潤y元之間的函數(shù)關系式;
(2)如果你是經理,為使每月的銷售利潤最大,那么你確定這種書包的單價為多少元?此時,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形網格中,△AOB的頂點均在格點上,點A、B的坐標分別是A(3,2)、B(1,3).將△AOB繞點O逆時針旋轉90°后得到△A1OB1 .
(1)畫出旋轉后的△A1OB1 , 點A1的坐標為;
(2)在旋轉過程中,點B經過的路徑為 ,求 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:二次函數(shù)y=ax2+bx+c的圖像所示,下列結論中:①abc>0;②2a+b=0;③當m≠1時,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2 , 且x1≠x2 , 則x1+x2=2,正確的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)稱為這兩個函數(shù)的“再生二次函數(shù)”,其中t是不為零的實數(shù),其圖像記作拋物線E,現(xiàn)有點A(2,0)和拋物線E上的點B(﹣1,n),請完成下列任務;
(1)【嘗試】①當t=2時,拋物線y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的頂點坐標為
(2)②判斷點A是否在拋物線E上;
(3)③求n的值.
(4)【發(fā)現(xiàn)】通過(2)和(3)的演算可知,對于t取任何不為零的實數(shù),拋物線E總過定點,坐標為 .
(5)【應用】
①二次函數(shù)y=﹣3x2+5x+2是二次函數(shù)y=x2﹣3x+3和一次函數(shù)y=﹣2x+4的一個“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由;
②以AB為邊作矩形ABCD,使得其中一個頂點落在y軸上;若拋物線E經過A,B,C,D其中的三點,求出所有符合條件的t的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com