【題目】在三角形ABC中,點(diǎn)D在線段AB上,DE∥BC交AC于點(diǎn)E,點(diǎn)F在直線BC上,作直線EF,過點(diǎn)D作直線DH∥AC交直線EF于點(diǎn)H.
(1)在如圖1所示的情況下,求證:∠HDE=∠C;
(2)若三角形ABC不變,D,E兩點(diǎn)的位置也不變,點(diǎn)F在直線BC上運(yùn)動(dòng).
①當(dāng)點(diǎn)H在三角形ABC內(nèi)部時(shí),直接寫出∠DHF與∠FEC的數(shù)量關(guān)系;
②當(dāng)點(diǎn)H在三角形ABC外部時(shí),①中結(jié)論是否依然成立?請(qǐng)?jiān)趫D2中畫圖探究,并說明理由.
【答案】(1)證明見解析;(2)①∠DHF+∠FEC=180°;②當(dāng)點(diǎn)H在三角形ABC外部時(shí),∠DHF=∠FEC,理由見解析.
【解析】
(1)根據(jù)“平行線的性質(zhì)”結(jié)合“已知條件”分析證明即可;
(2)①如圖1,當(dāng)點(diǎn)H在△ABC內(nèi)部時(shí),由DH∥AC可得∠FEC=∠DHE,結(jié)合∠DHE+∠DHF=180°,即可得到:此時(shí)∠DHF+∠FEC=180°;
②當(dāng)點(diǎn)H不在△ABC內(nèi)部時(shí),分點(diǎn)H在直線DE的上方和下方兩種情況畫出圖形,如圖2-1和圖2-2所示,再根據(jù)“平行線的性質(zhì)”結(jié)合“已知條件”進(jìn)行分析證明可得:此時(shí)∠DHF=∠FEC.
(1)∵DE∥BC,
∴∠ADE=∠C,
∵DH∥AC,
∴∠HDE=∠ADE.
(2)①當(dāng)點(diǎn)H在△ABC內(nèi)部時(shí),∠DHF+∠FEC=180°,理由如下:
∵DH∥AC,
∴∠FEC=∠DHE,
又∵∠DHE+∠DHF=180°,
∴∠DHF+∠FEC=180°;
②當(dāng)點(diǎn)H在△ABC外部時(shí),①中結(jié)論不成立,理由如下:
ⅰ).如圖2-1,當(dāng)點(diǎn)H在直線DE上方時(shí),
∵DH∥AC,
∴∠DHF=∠FEC.
ⅱ).如圖2-2,當(dāng)點(diǎn)H在直線DE下方時(shí),
∵DH∥AC,
∴∠DHF=∠FEC.
綜上所述,當(dāng)點(diǎn)H在△ABC外部時(shí),∠DHF=∠FEC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O,D,E三點(diǎn)在同一直線上,∠AOB=90°.
(1)圖中∠AOD的補(bǔ)角是_____,∠AOC的余角是_____;
(2)如果OB平分∠COE,∠AOC=35°,請(qǐng)計(jì)算出∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 中, 于,且.
()試說明是等腰三角形.
()已知,如圖,動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒的速度沿線段向點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā)以相同速度沿線段向點(diǎn)運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止.設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為(秒).
①若的邊與平行,求的值.
②若點(diǎn)是邊的中點(diǎn),問在點(diǎn)運(yùn)動(dòng)的過程中, 能否成為等腰三角形?若能,求出的值;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校隨機(jī)調(diào)查了部分學(xué)生,就“你最喜歡的圖書類別”(只選一項(xiàng))對(duì)學(xué)生課外閱讀的情況作了調(diào)查統(tǒng)計(jì),將調(diào)查結(jié)果統(tǒng)計(jì)后繪制成如下統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖表提供的信息解答下列問題:
種類 | 頻數(shù) | 頻率 |
卡通畫 | a | .45 |
時(shí)文雜志 | b | 0.16 |
武俠小說 | 50 | c |
文學(xué)名著 | d | e |
(1)這次隨機(jī)調(diào)查了______名學(xué)生,統(tǒng)計(jì)表中a=______,d=______;
(2)假如以此統(tǒng)計(jì)表繪出扇形統(tǒng)計(jì)圖,則武俠小說對(duì)應(yīng)的圓心角是______;
(3)試估計(jì)該校1500名學(xué)生中有多少名同學(xué)最喜歡文學(xué)名著類書籍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長(zhǎng)為( 。
A.42 B.32 C.42 或 32 D.37 或 33
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點(diǎn)E,與過點(diǎn)C的⊙O的切線交于點(diǎn)D.
(1)若AC=4,BC=2,求OE的長(zhǎng).
(2)試判斷∠A與∠CDE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題: ①若 >1,則a>b;
②若a+b=0,則|a|=|b|;
③等邊三角形的三個(gè)內(nèi)角都相等;
④底角相等的兩個(gè)等腰三角形全等.
其中原命題與逆命題均為真命題的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖中的小方格都是邊長(zhǎng)為1的正方形,△ABC的頂點(diǎn)坐標(biāo)分別為:A(-3,0),B(-1,-2),C(-2,2).
(1)請(qǐng)?jiān)趫D中畫出△ABC繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°后的圖形△A′BC′.
(2)請(qǐng)直接寫出以A′、B、C′為頂點(diǎn)平行四邊形的第4個(gè)頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com