如圖,已知矩形ABCD的邊BC在x軸上,矩形ABCD對角線的交點(diǎn)E的橫坐標(biāo)為m(m>0),且點(diǎn)A、E精英家教網(wǎng)和點(diǎn)N(1,2)都在函數(shù)y=
kx
的圖象上.
(1)求k的值;
(2)求點(diǎn)A的坐標(biāo)(用m表示);
(3)當(dāng)滿足上述條件的矩形ABCD為正方形時(shí),請求出此時(shí)m的值;
(4)點(diǎn)F在y軸的正半軸上,且OF=OB,在(3)的條件下,是否線段BC上存在點(diǎn)P,使PD=PF,若存在,求出符合條件的點(diǎn)P的坐標(biāo),若不存在,請說明理由.
分析:(1)由N點(diǎn)坐標(biāo)易求k值;
(2)求E點(diǎn)坐標(biāo),再根據(jù)矩形的性質(zhì)求A的坐標(biāo);
(3)AB=BC,即A的縱坐標(biāo)與BC長相等,據(jù)此得方程求解;
(4)若PD=PF,則P為DF的垂直平分線與x軸的交點(diǎn),根據(jù)題意在BC上,設(shè)其坐標(biāo)為P(x,0),用含x的式子表示PF、PD,得方程求解.
解答:精英家教網(wǎng)解:(1)因?yàn)閽佄锞過N(1,2),所以k=2;

(2)∵E的橫坐標(biāo)為m(m>0),
∴縱坐標(biāo)為
2
m
,根據(jù)矩形性質(zhì),AB=
4
m
,即A點(diǎn)縱坐標(biāo)為
4
m
,代入y=
2
x
中,得x=
m
2

∴A(
m
2
,
4
m
);

(3)根據(jù)上面的解題過程可得B(
m
2
,0),C(
3
2
m
,0),BC=m,
∵AB=BC,∴
4
m
=m,解得m=±2,
∵m>0,∴m=2;

(4)若PD=PF,則P為DF的垂直平分線與x軸的交點(diǎn),
根據(jù)題意在BC上,設(shè)其坐標(biāo)為P(x,0),則PC=3-x,
根據(jù)勾股定理得
x2+12
=
(3-x)2+22
,解得x=2,
∴線段BC上存在點(diǎn)P,使PD=PF,P(2,0).
點(diǎn)評:此題綜合性較強(qiáng),把函數(shù)知識與四邊形相結(jié)合以及進(jìn)行存在性問題討論,檢驗(yàn)學(xué)生綜合分析問題和解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形DEFG內(nèi)接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,則矩形的邊長DG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中,AB=12cm,BC=6cm,點(diǎn)M沿AB方向從A向B以2cm/秒的速度移動,點(diǎn)N從D沿DA方向以1c精英家教網(wǎng)m/秒的速度移動,如果M、N兩點(diǎn)同時(shí)出發(fā),移動的時(shí)間為x秒(0≤x≤6).
(1)當(dāng)x為何值時(shí),△MAN為等腰直角三角形?
(2)當(dāng)x為何值時(shí),有△MAN∽△ABC?
(3)愛動腦筋的小紅同學(xué)在完成了以上聯(lián)系后,對該問題作了深入的研究,她認(rèn)為:在M、N的移動過程中(N不與D、A重合,M不與A、B重合),以A、M、C、N為頂點(diǎn)的四邊形面積是一個(gè)常數(shù).她的這種想法對嗎?請說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正三角形ABC的邊長AB是480毫米.一質(zhì)點(diǎn)D從點(diǎn)B出發(fā),沿BA方向,以每秒鐘10毫米的速度向精英家教網(wǎng)點(diǎn)A運(yùn)動.
(1)建立合適的直角坐標(biāo)系,用運(yùn)動時(shí)間t(秒)表示點(diǎn)D的坐標(biāo);
(2)過點(diǎn)D在三角形ABC的內(nèi)部作一個(gè)矩形DEFG,其中EF在BC邊上,G在AC邊上.在圖中找出點(diǎn)D,使矩形DEFG是正方形(要求所表達(dá)的方式能體現(xiàn)出找點(diǎn)D的過程);
(3)過點(diǎn)D、B、C作平行四邊形,當(dāng)t為何值時(shí),由點(diǎn)C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時(shí)點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧德質(zhì)檢)如圖,已知Rt△ABC,∠B=90°,AB=8,BC=6,把斜邊AC平均分成n段,以每段為對角線作邊與AB、BC平行的小矩形,則這些小矩形的面積和是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中AB:BC=3:1,點(diǎn)A、B在x軸上,直線y=mx+n(0<m<n<
1
2
),過點(diǎn)A、C交y軸于點(diǎn)E,S△AOE=
9
8
S矩形ABCD,拋物線y=ax2+bx+c過點(diǎn)A、B,且頂點(diǎn)G在直線y=mx+n上,拋物線與y軸交于點(diǎn)F.
(1)點(diǎn)A的坐標(biāo)為
(-3n,0)
(-3n,0)
;B的坐標(biāo)
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

同步練習(xí)冊答案