(2006•曲靖)如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于( )

A.25°
B.30°
C.45°
D.60°
【答案】分析:先根據(jù)圖形折疊的性質(zhì)得出BC=CE,再由直角三角形斜邊的中線等于斜邊的一半即可得出CE=AE,進(jìn)而可判斷出△BEC是等邊三角形,由等邊三角形的性質(zhì)及直角三角形兩銳角互補(bǔ)的性質(zhì)即可得出結(jié)論.
解答:解:△ABC沿CD折疊B與E重合,
則BC=CE,
∵E為AB中點,△ABC是直角三角形,
∴CE=BE=AE,
∴△BEC是等邊三角形.
∴∠B=60°,
∴∠A=30°,
故選B.
點評:考查直角三角形的性質(zhì),等邊三角形的判定及圖形折疊等知識的綜合應(yīng)用能力及推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點,
(1)若拋物線l2與l1關(guān)于x軸對稱,求l2的解析式;
(2)若點B是拋物線l1上的一動點(B不與A、C重合),以AC為對角線,A、B、C三點為頂點的平行四邊形的第四個頂點定為D,求證:點D在l2上;
(3)探索:當(dāng)點B分別位于l1在x軸上、下兩部分的圖象上時,平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省煙臺市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點,
(1)若拋物線l2與l1關(guān)于x軸對稱,求l2的解析式;
(2)若點B是拋物線l1上的一動點(B不與A、C重合),以AC為對角線,A、B、C三點為頂點的平行四邊形的第四個頂點定為D,求證:點D在l2上;
(3)探索:當(dāng)點B分別位于l1在x軸上、下兩部分的圖象上時,平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年云南省玉溪市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點,
(1)若拋物線l2與l1關(guān)于x軸對稱,求l2的解析式;
(2)若點B是拋物線l1上的一動點(B不與A、C重合),以AC為對角線,A、B、C三點為頂點的平行四邊形的第四個頂點定為D,求證:點D在l2上;
(3)探索:當(dāng)點B分別位于l1在x軸上、下兩部分的圖象上時,平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年云南省曲靖市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點,
(1)若拋物線l2與l1關(guān)于x軸對稱,求l2的解析式;
(2)若點B是拋物線l1上的一動點(B不與A、C重合),以AC為對角線,A、B、C三點為頂點的平行四邊形的第四個頂點定為D,求證:點D在l2上;
(3)探索:當(dāng)點B分別位于l1在x軸上、下兩部分的圖象上時,平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年福建省三明市大田二中自主招生數(shù)學(xué)模擬試卷(2)(解析版) 題型:解答題

(2006•曲靖)如圖,從⊙O外一點A作⊙O的切線AB、AC,切點分別為B、C,且⊙O直徑BD=6,連接CD、AO.
(1)求證:CD∥AO;
(2)設(shè)CD=x,AO=y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若AO+CD=11,求AB的長.

查看答案和解析>>

同步練習(xí)冊答案