如圖,正方形ABCD中,點(diǎn)E是AD的中點(diǎn),點(diǎn)P是AB上的動(dòng)點(diǎn),PE的延長(zhǎng)線(xiàn)與CD的延長(zhǎng)線(xiàn)交于點(diǎn)Q,過(guò)點(diǎn)E作EF⊥PQ交BC的延長(zhǎng)線(xiàn)于點(diǎn)F.給出下列結(jié)論:
①△APE≌△DQE;
②點(diǎn)P在AB上總存在某個(gè)位置,使得△PQF為等邊三角形;
③若tan∠AEP=
2
3
,則
S△PBF
S△APE
=
14
3

其中正確的是(  )
A.①B.①③C.②③D.①②③

①∵四邊形ABCD是正方形
∴AB=BC=CD=QD,∠A=∠B=90°,
∵E為AD中點(diǎn),
∴AE=ED.
在△AEP和△DFQ中
∠A=∠B
AE=DE
∠AEP=∠DEQ

∴△AEP≌△DFQ,故①正確;
②作EG⊥CD于G,EM⊥BC于M,
∴∠PGQ=∠EMF=90°.
∵EF⊥PQ,
∴∠PEF=90°,
即∠PEH+∠HEF=90°,
∵∠HPE+∠HEP=90°,
∴∠HPE=∠HEF,
∵四邊形ABCD是正方形,
∴PG=EM.
在△EFM和△PQG中
∠PGQ=∠EMF
PG=ME
∠HPE=∠HEF
,
∴△EFM≌△PQG,
∴EF=PQ,
∴在Rt△PEF中,PF>EF,
∴PF>PQ,
∴△PQF不能為等邊三角形,故②錯(cuò)誤;
③∵△AEP≌△DFQ,
∴AE=ED,
∵tan∠AEP=
2
3
=
AP
AE
,設(shè)AP=2a,AE=3a,
∴ED=3a.
∴AD=6a.
∵∠AEP+∠DEF=90°,∠DEF+∠DRE=90°,
∴tan∠DRE=
2
3
=
DE
DR
,
∴DR=4.5a,
∴CR=1.5a.
∵∠CRF=∠DRE,
∴tan∠ERF=
2
3
=
CF
CR
,
∴CF=a.
∴BF=7a,BP=4a,
∴S△APE=
1
2
(2a.3a)=3a,S△PBF=
1
2
(4a.7a)=14a,
S△PBF
S△APE
=
14
3
,故③正確.
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,邊長(zhǎng)為1的正方形ABCD中,點(diǎn)E是對(duì)角線(xiàn)BD上的一點(diǎn),且BE=BC,點(diǎn)P在EC上,PM⊥BD于M,PN⊥BC于N,則PM+PN=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方形ABCD中,在AD的延長(zhǎng)線(xiàn)上取點(diǎn)E,F(xiàn),使DE=AD,DF=BD,連接BF分別交CD,CE于H,G.下列結(jié)論:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S四邊形DHGE;④圖中有8個(gè)等腰三角形.其中正確的共有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

四邊形ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,能判定它是正方形的條件是( 。
A.OA=OB=OC=OD、AC⊥BDB.OA=OB=OC=OD
C.OA=OC、OB=OC、AC⊥BDD.OA=OC、OB=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知正方形ABCD的邊長(zhǎng)是4,對(duì)角線(xiàn)AC、BD交于點(diǎn)O,點(diǎn)E在線(xiàn)段AC上,且OE=
2
3
6
,則∠ABE的度數(shù)______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.求證:
①△ABG≌△AFG;
②BG=GC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD是邊長(zhǎng)為2的正方形,點(diǎn)G是BC延長(zhǎng)線(xiàn)上一點(diǎn),連接AG,點(diǎn)E、F分別在AG上,連接BE、DF,∠1=∠2,∠3=∠4.
(1)證明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,在正方形ABCD中,點(diǎn)P是CD上一動(dòng)點(diǎn),連接PA,分別過(guò)點(diǎn)B,D作BE⊥PA,DF⊥PA,垂足分別為E,F(xiàn).
(1)求證:BE-DF=EF;
(2)如圖②,若點(diǎn)P在DC的延長(zhǎng)線(xiàn)上,其余條件不變,則BE,DF,EF有怎樣的數(shù)量關(guān)系______(不用證明)
(3)如圖③,若點(diǎn)P在CD的延長(zhǎng)線(xiàn)上,其余條件不變,畫(huà)出圖形,寫(xiě)出此時(shí)BE,DF,EF之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形OABC的邊長(zhǎng)為1,點(diǎn)P在AB上,∠AOP=30°,OP的延長(zhǎng)線(xiàn)交CB的延長(zhǎng)線(xiàn)于點(diǎn)Q,求PA和BQ的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案