精英家教網(wǎng)已知兩個等腰直角三角形(△ACB和△BED)的邊長分別為a,b(a<b),如圖放置在一起,連接AD.
(1)求陰影部分(△ABD)的面積;
(2)如果點P正好位于線段CE的中點,連接AP、DP得到△APD,求△APD的面積
(3)請你用所學(xué)的知識比較△ABD和△APD的面積大。
分析:(1)先根據(jù)梯形的定義證明四邊形ACED是梯形,再利用S陰影=S梯形-S△ACB-S△DEB即可求面積;
(2)利用S△ADP=S梯形-S△ACP-S△DEP可求面積;
(3)由于a<b,易求(b-a)2>0,即可得
1
2
(a2+b2)>ab,從而易求(
1
2
a+
1
2
b)2>ab,即S△ADP>S△ABD
解答:解:(1)∵△ACB和△BED是等腰直角三角形,
∴∠C=∠E=90°,
∴∠C+∠E=180°,
∴AC∥DE,
∵a<b,
∴四邊形ACED是梯形,
∴S陰影=S梯形-S△ACB-S△DEB=
1
2
(a+b)(a+b)-
1
2
a2-
1
2
b2=ab;

(2)同(1)一樣,
S△ADP=S梯形-S△ACP-S△DEP=
1
2
(a+b)(a+b)-
1
2
×
1
2
(a+b)•a-
1
2
×
1
2
(a+b)•b=(
1
2
a+
1
2
b)2;

(3)S△ADP>S△ABD,
∵a<b,
∴(b-a)2>0,
∴b2+a2>2ab,
1
2
(a2+b2)>ab,
∴(
1
2
a+
1
2
b)2=
1
2
1
2
a2+ab+
1
2
b2)>ab.
點評:本題考查了梯形的判定、三角形的面積公式、梯形的面積公式.關(guān)鍵是知道S陰影=S梯形-S△ACB-S△DEB,解題就比較容易.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

下列說法中,正確的有(  )
①腰相等的兩個等腰三角形全等;
②三角之比為3:4:5的三角形是直角三角形;
③在△ABC中,AB=AC=x,BC=6,則腰長x的取值范圍是3<x<6;
④要了解一批燈管的使用壽命,從中選取了20只進行測試,在這個問題中20支燈管是樣本容量;
⑤已知△ABC的三邊長分別是a,b,c,且
a
b
+
a
c
=
b+c
b+c-a
,則△ABC一定是底邊長為a的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江杭州蕭山區(qū)黨灣鎮(zhèn)初中八年級12月月考數(shù)學(xué)試卷(帶解析) 題型:單選題

下列說法中,正確的有(     )
①腰相等的兩個等腰三角形全等;②三角之比為3:4:5的三角形是直角三角形;③在中,AB=AC=x,BC=6,則腰長x的取值范圍是3<x<6;④要了解一批燈管的使用壽命,從中選取了20只進行測試,在這個問題中20支燈管是樣本容量;⑤已知的三邊長分別是a、b、c,且,則一定是底邊長為a的等腰三角形

A.0個  B.1個   C.2個   D.3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江杭州蕭山區(qū)黨灣鎮(zhèn)初中八年級12月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

下列說法中,正確的有(     )

①腰相等的兩個等腰三角形全等;②三角之比為3:4:5的三角形是直角三角形;③在中,AB=AC=x,BC=6,則腰長x的取值范圍是3<x<6;④要了解一批燈管的使用壽命,從中選取了20只進行測試,在這個問題中20支燈管是樣本容量;⑤已知的三邊長分別是a、b、c,且,則一定是底邊長為a的等腰三角形

A.0個            B.1個            C.2個            D.3個

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

下列說法中,正確的有
①腰相等的兩個等腰三角形全等;
②三角之比為3:4:5的三角形是直角三角形;
③在△ABC中,AB=AC=x,BC=6,則腰長x的取值范圍是3<x<6;
④要了解一批燈管的使用壽命,從中選取了20只進行測試,在這個問題中20支燈管是樣本容量;
⑤已知△ABC的三邊長分別是a,b,c,且數(shù)學(xué)公式,則△ABC一定是底邊長為a的等腰三角形.


  1. A.
    0個
  2. B.
    1個
  3. C.
    2個
  4. D.
    3個

查看答案和解析>>

同步練習冊答案