已知:如圖,拋物線y=ax2+bx+c的頂點(diǎn)C在以D(-2,-2)為圓心,4為半徑的圓上,且經(jīng)過(guò)⊙D與x軸的兩精英家教網(wǎng)個(gè)交點(diǎn)A、B,連接AC、BC、OC.
(1)求點(diǎn)C的坐標(biāo);
(2)求圖中陰影部分的面積;
(3)在拋物線上是否存在點(diǎn)P,使DP所在直線平分線段OC?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)作CH⊥x軸,垂足為H,CH必經(jīng)過(guò)圓心D,易得CH=6,則點(diǎn)C的坐標(biāo)可以得到.
(2)連接OA,OC則陰影部分的面積S=S扇形DAC-S△DAC;
(3)設(shè)OC的中點(diǎn)是E,E點(diǎn)的坐標(biāo)就可以求出,利用待定系數(shù)法就可以求出直線DE的解析式,直線與拋物線的交點(diǎn)就是所求的點(diǎn)P.
解答:精英家教網(wǎng)解:(1)如圖,作CH⊥x軸,垂足為H,
∵直線CH為拋物線對(duì)稱(chēng)軸,
∴CH垂直平分AB,
∴CH必經(jīng)過(guò)圓心D(-2,-2).
∵DC=4,
∴CH=6
∴C點(diǎn)的坐標(biāo)為(-2,-6).(3分)

(2)連接AD.
在Rt△ADH中,AD=4,DH=2,
∴∠HAD=30°,AH=
AD2-DH2
=2
3
(4分)
∴∠ADC=120°
∴S扇形DAC=
120°×π×42
360°
=
16
3
π(5分)
S△DAC=
1
2
AH•CD=
1
2
×2
3
×4=4
3
.(6分)
∴陰影部分的面積S=S扇形DAC-S△DAC=
16
3
π-4
3
.(7分)

(3)又∵AH=2
3
,H點(diǎn)坐標(biāo)為(-2,0),H為AB的中點(diǎn),
∴A點(diǎn)坐標(biāo)為(-2-2
3
,0),B點(diǎn)坐標(biāo)為(2
3
-2
,0).(8分)
又∵拋物線頂點(diǎn)C的坐標(biāo)為(-2,-6),
設(shè)拋物線解析式為y=a(x+2)2-6.
∵B(2
3
-2
,0)在拋物線上,
∴a(2
3
-2+2)2-6=0,
解得a=
1
2

∴拋物線的解析式為y=
1
2
(x+2)2-6(9分).
設(shè)OC的中點(diǎn)為E,過(guò)E作EF⊥x軸,垂足為F,連接DE,
精英家教網(wǎng)∵CH⊥x軸,EF⊥x軸,
∴CH∥EF
∵E為OC的中點(diǎn),
∴EF=
1
2
CH=3,OF=
1
2
OH=1.
即點(diǎn)E的坐標(biāo)為(-1,-3).
設(shè)直線DE的解析式為y=kx+b(k≠0),
-2=-2k+b
-3=-k+b
,
解得k=-1,b=-4,
∴直線DE的解析式為y=-x-4.(10分)
若存在P點(diǎn)滿足已知條件,則P點(diǎn)必在直線DE和拋物線上.
設(shè)點(diǎn)P的坐標(biāo)為(m,n),
∴n=-m-4,即點(diǎn)P坐標(biāo)為(m,-m-4),
∴-m-4=
1
2
(m+2)2-6,
解這個(gè)方程,得m1=0,m2=-6
∴點(diǎn)P的坐標(biāo)為(0,-4)和(-6,2).
故在拋物線上存在點(diǎn)P,使DP所在直線平分線段OC.(12分)
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求函數(shù)的解析式,以及弓形面積的求法,轉(zhuǎn)化為扇形的面積與三角形的面積的差的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),它們的橫坐標(biāo)分別為-1和3,精英家教網(wǎng)與y軸交點(diǎn)C的縱坐標(biāo)為3,△ABC的外接圓的圓心為點(diǎn)M.
(1)求這條拋物線的解析式;
(2)求圖象經(jīng)過(guò)M、A兩點(diǎn)的一次函數(shù)解析式;
(3)在(1)中的拋物線上是否存在點(diǎn)P,使過(guò)P、M兩點(diǎn)的直線與△ABC的兩邊AB、BC的交點(diǎn)E、F和點(diǎn)B所組成的△BEF和△ABC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對(duì)稱(chēng)軸;
(2)⊙P是經(jīng)過(guò)A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧化縣質(zhì)檢)已知:如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(1-
3
,0)和點(diǎn)B,將拋物線沿x軸向上翻折,頂點(diǎn)P落在點(diǎn)P′(1,3)處.
(1)求原拋物線的解析式;
(2)在原拋物線上,是否存在一點(diǎn),與它關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)也在該拋物線上?若存在,求滿足條件的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
(3)學(xué)校舉行班徽設(shè)計(jì)比賽,九年級(jí)(5)班的小明在解答此題時(shí)頓生靈感:過(guò)點(diǎn)P′作x軸的平行線交拋物線于C、D兩點(diǎn),將翻折后得到的新圖象在直線CD以上的部分去掉,設(shè)計(jì)成一個(gè)“W”型的班徽,“5”的拼音開(kāi)頭字母為W,“W”圖案似大鵬展翅,寓意深遠(yuǎn);而且小明通過(guò)計(jì)算驚奇的發(fā)現(xiàn)這個(gè)“W”圖案的高與寬(CD)的比非常接近黃金分割比
5
-1
2
(約等于0.618).請(qǐng)你計(jì)算這個(gè)“W”圖案的高與寬的比到底是多少?(參考數(shù)據(jù):
5
≈2.236
,
6
≈2.449
,結(jié)果精確到0.001)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,拋物線y=ax2-2ax+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A,B,點(diǎn)A的坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)若點(diǎn)M在拋物線上,且△ABC與△ABM的面積相等,直接寫(xiě)出點(diǎn)M的坐標(biāo);
(3)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(4)若平行于x軸的動(dòng)直線l與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問(wèn):是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出直線l的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,拋物線y=x2+px+q與x軸相交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA≠OB,OA=OC,設(shè)拋物線的頂點(diǎn)為點(diǎn)P,直線PC與x軸的交點(diǎn)D恰好與點(diǎn)A關(guān)于y軸對(duì)稱(chēng).
(1)求p、q的值.
(2)在題中的拋物線上是否存在這樣的點(diǎn)Q,使得四邊形PAQD恰好為平行四邊形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)連接PA、AC.問(wèn):在直線PC上,是否存在這樣點(diǎn)E(不與點(diǎn)C重合),使得以P、A、E為頂點(diǎn)的三角形與△PAC相似?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案