已知,平面直角坐標(biāo)系中,矩形OABC的邊OC在x軸正半軸上,邊OA在y軸正半軸上,B點(diǎn)的坐標(biāo)為(4,3).將△AOC沿對(duì)角線AC所在的直線翻折,得到△AO’C,點(diǎn)O’為點(diǎn)O的對(duì)稱點(diǎn),CO’與AB相交于點(diǎn)E(如圖①).

(1)試說明:EA=EC;
(2)求直線BO’的解析式;
(3)作直線OB(如圖②),直線l平行于y軸,分別交x軸、直線OB、O’B于點(diǎn)P、M、N,設(shè)P點(diǎn)的橫坐標(biāo)為m(m>0).y軸上是否存在點(diǎn)F,使得ΔFMN為等腰直角三角形?若存在,請(qǐng)求出此時(shí)m的值;若不存在,請(qǐng)說明理由.

(1)由折疊的性質(zhì)可得∠ACO=∠ACE,再根據(jù)矩形的性質(zhì)可得∠EAC=∠ACO,即可得到∠EAC=∠ACE,從而證得結(jié)論;(2);(3)m=、m=、m=12

解析試題分析:(1)由折疊的性質(zhì)可得∠ACO=∠ACE,再根據(jù)矩形的性質(zhì)可得∠EAC=∠ACO,即可得到∠EAC=∠ACE,從而證得結(jié)論;
(2)先由折疊的性質(zhì)求得點(diǎn)O’的坐標(biāo),即可得到結(jié)果;
(3)根據(jù)等腰直角三角形的性質(zhì)結(jié)合一次函數(shù)的性質(zhì)即可求得結(jié)果.
(1)由題意得∠ACO=∠ACE,
∵矩形OABC
∴AB∥CO
∴∠EAC=∠ACO
∴∠EAC=∠ACE
∴EA=EC;
(2)由題意得點(diǎn)O’的坐標(biāo)為(
設(shè)函數(shù)關(guān)系式為
∵圖象過點(diǎn)(,),(4,3)
,解得
∴函數(shù)關(guān)系式為;
(3)當(dāng)∠FMN=90°時(shí),可得m=
當(dāng)∠FNM=90°時(shí),可得m=
當(dāng)∠NFM=90°時(shí),可得m=12.
考點(diǎn):矩形的性質(zhì),一次函數(shù)的應(yīng)用
點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握折疊的性質(zhì):折疊前后的圖形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

7、已知在平面直角坐標(biāo)系中,圓P的圓心坐標(biāo)為(4,5),半徑為3個(gè)單位長(zhǎng)度,把圓P沿水平方向向左平移d個(gè)單位長(zhǎng)度后恰好與y軸相切,則d的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系內(nèi),O為坐標(biāo)原點(diǎn),A、B是x軸上的兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),精英家教網(wǎng)二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)A、B,與y軸相交于點(diǎn)C.
(1)如圖情況下:a、c的符號(hào)之間有何關(guān)系?
(2)如果線段OC的長(zhǎng)度是線段OA、OB長(zhǎng)度的比例中項(xiàng),試證a、c互為倒數(shù);
(3)在(2)的條件下,如果b=-4,AB=4
3
,求a、c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•浙江一模)如圖,已知在平面直角坐標(biāo)系中,點(diǎn)A(4,0)、B(-3,0),點(diǎn)C在y軸正半軸上,且tan∠CAO=1,點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過點(diǎn)Q作QE∥AC交BC于點(diǎn)E.
(1)求點(diǎn)C的坐標(biāo)及直線BC的解析式;
(2)連結(jié)CQ,當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(3)若點(diǎn)P是線段AC上的點(diǎn),是否存在這樣的點(diǎn)P,使△PQE成為等腰直角三角形?若存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樊城區(qū)模擬)如圖,已知在平面直角坐標(biāo)系xOy中,一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=
m
x
(m≠0)的圖象相交于A、B兩點(diǎn),且點(diǎn)B的縱坐標(biāo)為-
1
2
,過點(diǎn)A作AC⊥x軸于點(diǎn)C,AC=1,OC=2.求:
(1)求反比例函數(shù)的解析式和一次函數(shù)的解析式;
(2)求不等式kx+b-
m
x
<0的解集(請(qǐng)直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:平面直角坐標(biāo)系xOy中,點(diǎn)A(0,5),點(diǎn)B和點(diǎn)C是x軸上動(dòng)點(diǎn)(點(diǎn)B在點(diǎn)C的左邊),點(diǎn)C在原點(diǎn)的右邊,點(diǎn)D是y軸上的動(dòng)點(diǎn).若C(3,0),且△BOD和△AOC全等,則點(diǎn)D的坐標(biāo)為
(0,5)或(0,-5)或(0,3)或(0,-3)
(0,5)或(0,-5)或(0,3)或(0,-3)

查看答案和解析>>

同步練習(xí)冊(cè)答案