【題目】如圖,已知一次函數(shù)y=2x2的圖象與x,y軸分別交于點(diǎn)A,B,與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)C,且AB=AC,則k的值為()
A.5B.4C.3D.2
【答案】B
【解析】
作CD⊥x軸于D,易得△AOB≌△ADC,根據(jù)全等三角形的性質(zhì)得出OB=CD=2,OA=AD=1,那么點(diǎn)C的坐標(biāo)為(2,2),再根據(jù)圖象上的點(diǎn)滿足函數(shù)解析式即可得k的值.
作CD⊥x軸于D,則OB∥CD,
在△AOB和△ADC中,
,
∴△AOB≌△ADC(AAS),
∴OB=CD,OA=AD,
∵一次函數(shù)y=2x-2的圖象與x,y軸分別交于點(diǎn)A,B,
∴A(1,0)、B(0,-2),
∴OA=1,OB=2,
則AD=1,CD=2,
∴OD=2,
∴點(diǎn)C的坐標(biāo)為(2,2),
則k=2×2=4,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對(duì)角線交于點(diǎn)O,下列哪組條件不能判斷四邊形ABCD是平行四邊形( ).
A. OA=OC,OB=OD B. ∠BAD=∠BCD,AB∥CD
C. AD∥BC,AD=BC D. AB=CD,AO=CO
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是格點(diǎn)三角形(各頂點(diǎn)是網(wǎng)格線的交點(diǎn)), 每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形.
(1)將△ABC向右平移6個(gè)單位長(zhǎng)度,畫出平移后的△A1B1C1.
(2)將平移后的△A1B1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B1C2.
(3)將△ABC沿直線BC翻折,畫出翻折后的△A3BC.
(4)試問△ABC能否經(jīng)過一次旋轉(zhuǎn)后與△A2B1C2重合,若能,請(qǐng)?jiān)趫D中用字母O表示旋轉(zhuǎn)中心并寫出旋轉(zhuǎn)角的大;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù) a、b、c 在數(shù)軸上對(duì)應(yīng)的點(diǎn)的位置,如圖所示:① abc<0;② |a-b|+|b-c|=|a-c|;③ (a-b)(b-c)(c-a)>0;④ |a|<1-bc,以上四個(gè)結(jié)論正確的有( )個(gè)
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣2x+a(a<0)與y軸相交于點(diǎn)A,頂點(diǎn)為M.直線y=x﹣a分別與x軸,y軸相交于B,C兩點(diǎn),并且與直線AM相交于點(diǎn)N.
(1)試用含a的代數(shù)式分別表示點(diǎn)M與N的坐標(biāo);
(2)如圖,將△NAC沿y軸翻折,若點(diǎn)N的對(duì)應(yīng)點(diǎn)N′恰好落在拋物線上,AN′與x軸交于點(diǎn)D,連接CD,求a的值和四邊形ADCN的面積;
(3)在拋物線y=x2﹣2x+a(a<0)上是否存在一點(diǎn)P,使得以P,A,C,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出P點(diǎn)的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤.通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤.為了保證每天至少售出260斤,張阿姨決定降價(jià)銷售.
(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?
(3)當(dāng)每斤的售價(jià)定為多少元時(shí),每天獲利最大?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx2﹣(m+n)x+n(m<0)的圖象與y軸正半軸交于A點(diǎn).
(1)求證:該二次函數(shù)的圖象與x軸必有兩個(gè)交點(diǎn);
(2)設(shè)該二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)中右側(cè)的交點(diǎn)為點(diǎn)B,若∠ABO=45°,將直線AB向下平移2個(gè)單位得到直線l,求直線l的解析式;
(3)在(2)的條件下,設(shè)M(p,q)為二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),當(dāng)﹣3<p<0時(shí),點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)都在直線l的下方,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖象交于點(diǎn)A(1,m),與x軸交于點(diǎn)B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點(diǎn)M,交AB于點(diǎn)N,連接BM.
(1)求m的值和反比例函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫出當(dāng)x>0時(shí)不等式2x+6﹣<0的解集;
(3)直線y=n沿y軸方向平移,當(dāng)n為何值時(shí),△BMN的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BA延長(zhǎng)線上的一點(diǎn),點(diǎn)E是AC的中點(diǎn).
(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法).
①作∠DAC的平分線AM;
②連接BE并延長(zhǎng)交AM于點(diǎn)F;
③連接FC.
(2)猜想與證明:猜想四邊形ABCF的形狀,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com