【題目】如圖,已知AOB是一條直線,OC是∠AOD的平分線,OE 是∠BOD的平分線.
(1)若∠AOE=140°,求∠AOC的度數(shù);
(2)若∠EOD :∠COD=2 : 3,求∠COD的度數(shù).
【答案】(1)50°(2)54°
【解析】試題分析:(1)根據(jù)角平分線的性質(zhì),由角的和差關(guān)系求解即可;
(2)根據(jù)比例關(guān)系,設(shè)出未知數(shù),然后根據(jù)和為90°,列方程求解即可.
試題解析:(1)OC是∠AOD的平分線,OE是∠BOD的平分線,
∠DOE=∠BOD,∠COD=∠AOD, ∠AOB=180°,
∠COE=∠DOE+∠COD=∠BOD+∠AOD=∠AOB=90°,
∠AOC=∠AOE-∠EOC=140°-90°=50°.
(2)∠COE=90°,∠EOD :∠COD=2 : 3,
設(shè)∠EOD=2x°,∠COD=3x°,2x+3x=90, x=18, ∠COD=54°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,O,B三點(diǎn)在同一直線上,∠BOD與∠BOC互補(bǔ).
(1)試判斷∠AOC與∠BOD之間有怎樣的數(shù)量關(guān)系,寫出你的結(jié)論,并加以證明;
(2)OM平分∠AOC,ON平分∠AOD,①依題意,將備用圖補(bǔ)全;
② 若∠MON=40°,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣2x+m﹣1=0有兩個(gè)實(shí)數(shù)根,則m的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題是真命題的有( )
①對頂角相等;②兩直線平行,內(nèi)錯(cuò)角相等;③兩個(gè)銳角對應(yīng)相等的兩個(gè)直角三角形全等④若a2=b2,則a=b;⑤若a>b,則ac2>bc2.
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多邊形的每一個(gè)外角都等于40°,那么這個(gè)多邊形的內(nèi)角和為( )
A. 1260° B. 900° C. 1620° D. 360°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com