【題目】如圖1,在Rt△ACB中,∠ACB=90°,∠ABC=30°,AC=1,點D為AC上一動點,連接BD,以BD為邊作等邊△BDE,設CD=n.

(1)當n=1時,EA的延長線交BC的延長線于F,則AF=;
(2)當0<n<1時,如圖2,在BA上截取BH=AD,連接EH.
①設∠CBD=x,用含x的式子表示∠ADE和∠ABE.
②求證:△AEH為等邊三角形.

【答案】
(1)2
(2)解:①證明:∵△BDE是等邊三角形,

∴BE=BD,∠EDB=∠EBD=60°,

在△BCD中,∠ADE+∠EDB=∠CBD+∠C,

即∠ADE+60°=∠CBD+90°=x+90°,

∴∠ADE=30°+∠CBD,

∵∠HBE+∠ABD=60°,∠CBD+∠ABD=30°,

∴∠HBE=30°+∠CBD,

∴∠ADE=∠HBE,

∴∠ABE=∠ADE=x+90°;

②在△ADE與△HBE中,

,

∴△ADE≌△HBE(SAS),

∴AE=HE,∠AED=∠HEB,

∴∠AED+∠DEH=∠DEH+∠HEB,

即∠AEH=∠BED=60°,

∴△AEH為等邊三角形


【解析】(1)解:∵△BDE是等邊三角形,
∴∠EDB=60°,
∵∠ACB=90°,∠ABC=30°,
∴∠BAC=180°﹣90°﹣30°=60°,
∴FAC=180°﹣60°﹣60°=60°,
∴∠F=180°﹣90°﹣60°=30°,
∵∠ACB=90°,
∴∠ACF=180°﹣90°,
∴AF=2AC=2×1=2;
故答案為:2.
(1)根據(jù)三角形內(nèi)角和定理求出∠BAC=60°,再根據(jù)平角等于180°求出∠FAC=60°,然后求出∠F=30°,根據(jù)30°角所對的直角邊等于斜邊的一半求解即可;(2)①根據(jù)三角形的任意一個外角等于與它不相鄰的兩個內(nèi)角的和利用∠CBD表示出∠ADE=30°+∠CBD,又∠HBE=30°+∠CBD,從而得到∠ADE=∠ABE;②然后根據(jù)邊角邊證明△ADE與△HBE全等,根據(jù)全等三角形對應邊相等可得AE=HE,對應角相等可得∠AED=∠HEB,然后推出∠AEH=∠BED=60°,再根據(jù)等邊三角形的判定即可證明.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分6分)我校學生會發(fā)現(xiàn)同學們就餐時剩余飯菜較多,浪費嚴重,于是準備在校內(nèi)倡導“光盤行動”,讓同學們珍惜糧食,為了讓同學們理解這次活動的重要性,校學生會在某天午餐后,隨機調(diào)查了部分同學這餐飯菜的剩余情況,并將結果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.

(1)這次被調(diào)查的同學共有   名;

(2)把條形統(tǒng)計圖補充完整;

(3)校學生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學生一餐浪費的食物可以供200人用一餐.據(jù)此估算,該校1800名學生一餐浪費的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式計算正確的是(  )
A.a+2a2=3a3
B.(a+b)2=a2+ab+b2
C.2(a﹣b)=2a﹣2b
D.(2ab)2÷(ab)=2ab(ab≠0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點E、D分別從A、C出發(fā),沿AC,CB方向以相同的速度在線段AC,CB上運動,AD、BE相交于F點.

(1)求證:△ABE≌△CAD;
(2)當E、D運動時,∠BFD大小是否發(fā)生改變?若不變求其大小,若改變求其變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】6497.1億用科學記數(shù)法表示為( 。

A.6.4971×1012B.64.971×1010C.6.5×1011D.6.4971×1011

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】|x|3,y24,且xy,則xy_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)計算:

(2)如圖,四邊形ABCD是平行四邊形,AE平分∠BAD,交DC的延長線于點E.求證:DA=DE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有A,B兩種商品,買2件A商品和1件B商品用了90元,買3件A商品和2件B商品共用了160元.

(1)求A,B兩種商品每件多少元?

(2)如果小亮準備購買A,B兩種商品共10件,總費用不超過350元,且不低于300元,問有幾種購買方案,哪種方案費用最低?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把直線y=-3x+4向下平移2個單位,得到的直線解析式是__________

查看答案和解析>>

同步練習冊答案