精英家教網已知:如圖,等邊△ABC的邊長為2,E為BC邊的中點,分別以頂點B、C為圓心,BE、CE長為半徑畫弧交AB、AC于點D、F.求圖中陰影部分的面積.
分析:根據題意先求得AE,再求出S扇形BED=S扇形CEF,以及S△ABC.從而得出S陰影ADEF=S△ABC-2S扇形BED
解答:精英家教網解:∵△ABC是等邊三角形,
∴∠B=∠C=60°.
∵E為BC邊的中點,BC=2,
∴BE=CE=1.且AE⊥BC.
∴AE=
AB2-BE2
=
3

∴S扇形BED=S扇形CEF=
60×π×12
360
=
1
6
π.
∴S△ABC=
1
2
×2×
3
=
3

∴S陰影ADEF=S△ABC-2S扇形BED=
3
-
1
3
π.
點評:本題考查了扇形面積的計算,能得出陰影部分的面積等于S陰影ADEF=S△ABC-2S扇形BED,是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,等邊△ABC內接于⊙O,點P是劣弧
BC
上的一點(端點除外),延長BP至D,使BD=AP,連接CD.
(1)若AP過圓心O,如圖①,請你判斷△PDC是什么三角形?并說精英家教網明理由;
(2)若AP不過圓心O,如圖②,△PDC又是什么三角形?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,等邊△ABC的邊長為6,點D、E分別在AB、AC上,且AD=AE=2,直線l過點A,且l∥BC,若點F從點B開始以每秒1個單位長的速度沿射線BC方向運動,設F點運動的時間為t秒,當t>0時,直線DF交l于點G,GE的延長線與BC的延長線交于點H,AB與GH相交于點O.
(1)當t為何值時,AG=AE?
(2)請證明△GFH的面積為定值;
(3)當t為何值時,點F和點C是線段BH的三等分點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知,如圖,等邊三角形ABC邊長為2,以BC為對稱軸將△ABC翻折,得到四邊形ABDC,將此四邊形放在直角坐標系xOy中,使AB在x軸上,點D在直線y=
3
2
x-
3
上.
(1)根據上述條件畫出圖形,并求出A、B、D、C的坐標;
(2)若直線y=
3
2
x-
3
與y軸交于點P,拋物線y=ax2+bx+c,過A、B、P三點,求這條拋物線的函數(shù)關系式;
(3)求出拋物線的頂點坐標,并指出這個點在△ABC的什么特殊位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,等邊三角形ABD與等邊三角形ACE具有公共頂點A,連接CD,BE,交于點P.
(1)觀察度量,∠BPC的度數(shù)為
120°
120°
.(直接寫出結果)
(2)若繞點A將△ACE旋轉,使得∠BAC=180°,請你畫出變化后的圖形.(示意圖)
(3)在(2)的條件下,求出∠BPC的度數(shù).

查看答案和解析>>

同步練習冊答案