如圖△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中點,點P從B出發(fā),以a厘米/秒(a>0)的速度沿BA勻速向點A運動,點Q同時以1厘米/秒的速度從D出發(fā),沿DB勻速向點B運動,其中一個動點到達端點時,另一個動點也隨之停止運動,設(shè)它們運動的時間為t秒.
(1)若a=2,△BPQ∽△BDA,求t的值;
(2)設(shè)點M在AC上,四邊形PQCM為平行四邊形.
①若a=,求PQ的長;
②是否存在實數(shù)a,使得點P在∠ACB的平分線上?若存在,請求出a的值;若不存在,請說明理由.

【答案】分析:(1)由△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中點,根據(jù)等腰三角形三線合一的性質(zhì),即可求得BD與CD的長,又由a=2,△BPQ∽△BDA,利用相似三角形的對應(yīng)邊成比例,即可求得t的值;
(2)①首先過點P作PE⊥BC于E,由四邊形PQCM為平行四邊形,易證得PB=PQ,又由平行線分線段成比例定理,即可得方程,解此方程即可求得答案;
②首先假設(shè)存在點P在∠ACB的平分線上,由四邊形PQCM為平行四邊形,可得四邊形PQCM是菱形,即可得PB=CQ,PM:BC=AP:AB,及可得方程組,解此方程組求得t值為負(fù),故可得不存在.
解答:解:(1)△ABC中,AB=AC=10cm,BC=12cm,D是BC的中點,
∴BD=CD=BC=6cm,
∵a=2,
∴BP=2tcm,DQ=tcm,
∴BQ=BD-QD=6-t(cm),
∵△BPQ∽△BDA,
,

解得:t=;

(2)①過點P作PE⊥BC于E,
∵四邊形PQCM為平行四邊形,
∴PM∥CQ,PQ∥CM,PQ=CM,
∴PB:AB=CM:AC,
∵AB=AC,
∴PB=CM,
∴PB=PQ,
∴BE=BQ=(6-t)cm,
∵a=,
∴PB=tcm,
∵AD⊥BC,
∴PE∥AD,
∴PB:AB=BE:BD,
,
解得:t=,
∴PQ=PB=t=(cm);

②不存在.理由如下:
∵四邊形PQCM為平行四邊形,
∴PM∥CQ,PQ∥CM,PQ=CM,
∴PB:AB=CM:AC,
∵AB=AC,∴PB=CM,∴PB=PQ.
若點P在∠ACB的平分線上,則∠PCQ=∠PCM,
∵PM∥CQ,
∴∠PCQ=∠CPM,
∴∠CPM=∠PCM,
∴PM=CM,
∴四邊形PQCM是菱形,
∴PQ=CQ,PM∥CQ,
∴PB=CQ,PM:BC=AP:AB,
∵PB=atcm,CQ=CD+QD=6+t(cm),
∴PM=CQ=6+t(cm),AP=AB-PB=10-at(cm),

化簡得②:6at+5t=30③,
把①代入③得,t=-
∴不存在實數(shù)a,使得點P在∠ACB的平分線上.
點評:此題考查了相似三角形的判定與性質(zhì)、平行四邊形的性質(zhì)、菱形的判定與性質(zhì)以及等腰三角形的性質(zhì)等知識.此題難度較大,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖△ABC中,AB=AC,BD平分∠ABC,且△ABC∽△BDC,則∠A=
36
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖△ABC中,AB=3,AC=2,BO平分∠ABC,CO平分∠ACB.DE過點O交AB于D,交AC于E,且DE∥BC.則△ADE周長為
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖△ABC中,AB=AC,M是BC中點,D,E分別在AB,AC上,且BD=CE,求證:ME=MD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖△ABC中,AB=AC,AD和BE是高,它們交于點H,且AE=BE,
(1)找出圖中與△BCE全等的三角形,并說明理由;
(2)求證:AH=2BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖△ABC中,AB=6,AC=6
5
,∠B=90°,點P從A開始沿AB邊向點B以1cm/s的速度移動,1秒后點Q從點B開始沿BC邊向點C以2cm/s的速度移動,那么Q從B出發(fā),經(jīng)過
2或3
2或3
秒,△PBQ的面積等于6cm2

查看答案和解析>>

同步練習(xí)冊答案