【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A、C的坐標(biāo)分別為(6,0)、(0,4),點P是線段BC上的動點,當(dāng)△OPA是等腰三角形時,則P點的坐標(biāo)是_____.
【答案】(3,4)或(,4)或(6﹣,4)
【解析】
由矩形的性質(zhì)得出BC=OA=6,AB=OC=4,∠B=∠OCB=90°,分三種情況:①當(dāng)PO=PA時;②當(dāng)AP=AO=6時;③當(dāng)OP=OA=6時;分別求出PC的長,即可得出結(jié)果.
∵四邊形OABC是矩形,
∴BC=OA=6,AB=OC=4,∠B=∠OCB=90°,
分三種情況:如圖所示:
①當(dāng)PO=PA時,P在OA的垂直平分線上,P是BC的中點,PC=3,
∴點P的坐標(biāo)為(3,4);
②當(dāng)AP=AO=6時,BP=,
∴PC=6-2,
∴P(6-2,4);
③當(dāng)OP=OA=6時,PC=,
∴P(2,4).
綜上所述:點P的坐標(biāo)為(3,4)或(2,4)或(6-2,4).
故答案為:(3,4)或(2,4)或(6-2,4).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2).
(1)以原點O為位似中心,相似比為1∶2,在y軸的左側(cè),畫出△ABC放大后的圖形△A1B1C1,并直接寫出C1點的坐標(biāo);
(2)若點D(a,b)在線段AB上,請直接寫出經(jīng)過(1)的變化后點D的對應(yīng)點D1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】司機(jī)小李某天下午營運(yùn)全是在東西走向的大道上行駛,如果規(guī)定向東行駛為正,向西行駛為負(fù),這天下午行車?yán)锍倘缦拢海▎挝唬呵祝?/span>
,,,,,,,,,
(1)被送到目的地時,小李在出發(fā)地的什么位置?
(2若每千米的營運(yùn)額為8元,則這天下午的營運(yùn)額為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y= 與一次函數(shù)y=kx﹣k+2在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“國慶節(jié)大酬賓”,某商場設(shè)計的促銷活動如下:在一個不透明的箱子里放有3個質(zhì)地相同的小球,并在球上分別標(biāo)有“5元”、“10元”和“15元”的字樣,規(guī)定:在本商場同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回).商場根據(jù)兩個小球所標(biāo)金額和返還相等價格的購物券,購物券可以在本商場消費(fèi),某顧客剛好消費(fèi)300元.
(1)該顧客最多可得到元購物券;
(2)請你用畫樹狀圖和列表的方法,求出該顧客所得購物券的金額不低于25元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊不規(guī)則的四邊形地皮ABCO,各個頂點的坐標(biāo)分別為A(-2,6),B(-5,4),C(-7,0),O(0,0)(圖上一個單位長度表示10米),現(xiàn)在想對這塊地皮進(jìn)行規(guī)劃,需要確定它的面積.
(1)求這個四邊形的面積;
(2)如果把四邊形ABCD的各個頂點的縱坐標(biāo)保持不變,橫坐標(biāo)加2,所得到的四邊形面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀)數(shù)軸上點A、B表示的數(shù)分別是a、b,若a>b,則AB=a﹣b.
例如,若數(shù)軸上點A、B表示的兩個數(shù)分別為﹣2000和+18,
則AB=18﹣(﹣2000)=18+2000=2018
(應(yīng)用)若數(shù)軸上點A、B表示的兩個數(shù)分別為x和﹣1,且x>﹣1,則AB= (用含x的代數(shù)式表示);
(拓展)如圖,數(shù)軸上點A表示的數(shù)為﹣2a,點B表示的數(shù)為﹣a,點C表示的數(shù)為﹣2,且AB=BC.
(1)求a的值;
(2)以BC為邊作等邊三角形BCD,并將共向右滾動1周得到新的等邊三角形BCD,依次繼續(xù)滾動…….若滾動第n周后,等邊三角形BCD的頂點C表示的數(shù)是2014,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名足球守門員練習(xí)折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負(fù)數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10
(1)守門員最后是否回到了球門線的位置?
(2)在練習(xí)過程中,守門員離開球門最遠(yuǎn)距離是多少米?
(3)守門員全部練習(xí)結(jié)束后,他共跑了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,在平面直角坐標(biāo)系中,已知x軸上兩點A(x1,0),B(x2,0)的距離記作AB=|x1﹣x2|;若A,B是平面上任意兩點,我們可以通過構(gòu)造直角三角形來求AB間的距離,如圖,過A,B分別向x軸、y軸作垂線AM1、AN1和BM2、BN2,垂足分別是M1、N1、M2、N2,直線AN1交BM2于點Q,在Rt△ABQ中,AQ=|x1﹣x2|,BQ=|y1﹣y2|,∴AB2=AQ2+BQ2=|x1﹣x2|+|y1﹣y2|2=(x1﹣x2)2+(y1﹣y2)2,由此得到平面直角坐標(biāo)系內(nèi)任意兩點A(x1,y1),B(x2,y2)間的距離公式為:
(1)AB= .
(2)直接應(yīng)用平面內(nèi)兩點間距離公式計算點A(1,﹣3),B(﹣2,1)之間的距離為 ;
(3)根據(jù)閱讀材料并利用平面內(nèi)兩點間的距離公式,求代數(shù)式的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com