如圖,直線AC∥DF,C、E分別在AB、DF上,小華想知道∠ACE和∠DEC是否互補(bǔ),但是他有沒有帶量角器,只帶了一副三角板,于是他想了這樣一個(gè)辦法:首先連結(jié)CF,再找出CF的中點(diǎn)O,然后連結(jié)EO并延長(zhǎng)EO和直線AB相交于點(diǎn)B,經(jīng)過測(cè)量,他發(fā)現(xiàn)EO=BO,因此他得出結(jié)論:∠ACE和∠DEC互補(bǔ),而且他還發(fā)現(xiàn)BC=EF。

以下是他的想法,請(qǐng)你填上根據(jù)。小華是這樣想的:
因?yàn)镃F和BE相交于點(diǎn)O,
根據(jù)                                  得出∠COB=∠EOF;
而O是CF的中點(diǎn),那么CO=FO,又已知 EO=BO,                
根據(jù)                                  得出△COB≌△FOE,   
根據(jù)                                  得出BC=EF,
根據(jù)                                  得出∠BCO=∠F,
既然∠BCO=∠F,根據(jù)                                              出AB∥DF,
既然AB∥DF,根據(jù)                                           得出∠ACE和∠DEC互補(bǔ).

根據(jù)對(duì)頂角相等;兩邊對(duì)應(yīng)相等且夾角相等的兩三角形全等;全等三角形對(duì)應(yīng)邊相等;全等三角形對(duì)應(yīng)角相等;內(nèi)錯(cuò)角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補(bǔ).

解析試題分析:若∠ACE和∠DEC互補(bǔ),則AB∥DF,反之亦成立.因此需證AB∥DF.根據(jù)題意易證△COB≌△FOE,運(yùn)用全等三角形的性質(zhì)和平行線的判定方法求解.
試題解析:根據(jù)對(duì)頂角相等得出∠COB=∠EOF;
而O是CF的中點(diǎn),那么CO=FO,又已知EO=BO,
根據(jù)兩邊對(duì)應(yīng)相等且夾角相等的兩三角形全等得出△COB≌△FOE,
根據(jù)全等三角形對(duì)應(yīng)邊相等得出BC=EF,
根據(jù)全等三角形對(duì)應(yīng)角相等得出∠BCO=∠F,
既然∠BCO=∠F根據(jù)內(nèi)錯(cuò)角相等,兩直線平行、得出AB∥DF,
既然AB∥DF,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ).得出∠ACE和∠DEC互補(bǔ).
考點(diǎn):1.全等三角形的判定與性質(zhì);2.平行線的判定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖:BD平分∠ABC,F在AB上,G在AC上,F(xiàn)C與BD相交于點(diǎn)H.,
求證: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

問題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)M,DE⊥BC于點(diǎn)N,試判斷線段OM與ON的數(shù)量關(guān)系,并說(shuō)明理由.
探究展示:小宇同學(xué)展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據(jù)1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據(jù)2)
反思交流:
(1)上述證明過程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:                                                        ;
依據(jù)2:                                                        
(2)你有與小宇不同的思考方法嗎?請(qǐng)寫出你的證明過程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點(diǎn)D落在BA的延長(zhǎng)線上,F(xiàn)D的延長(zhǎng)線與CA的延長(zhǎng)線垂直相交于點(diǎn)M,BC的延長(zhǎng)線與DE垂直相交于點(diǎn)N,連接OM、ON,試判斷線段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,直線AB與直線BC相交于點(diǎn)B,點(diǎn)D是直線BC上一點(diǎn),求作:點(diǎn)E,使直線DE∥AB,且點(diǎn)E到B、D兩點(diǎn)的距離相等.(尺規(guī)作圖,要求在題目的原圖中完成作圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,是直角,,的平分線,的平分線.

(1)求的大小.
(2)當(dāng)銳角的大小發(fā)生改變時(shí),的大小是否發(fā)生改變?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

(2013年廣東梅州3分)若∠α=42°,則∠α的余角的度數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:計(jì)算題

開心畫一畫(在原圖上作圖,保留作圖痕跡)
【小題1】在AD的右側(cè)作∠DCP=∠DAB;

【小題2】在射線CP上取一點(diǎn)E,使CE=AB,連接BE.AE.
【小題3】畫出△ABE的BE邊上的高AF和AB邊上的高EG.
(2分)如果已知:AB=10,BE=12,EG=6,則AF=    (直接填結(jié)果)

查看答案和解析>>

同步練習(xí)冊(cè)答案