【題目】如圖1,拋物線y=ax2+(a+2)x+2(a≠0)與x軸交于點A(4,0),與y軸交于點B,在x軸上有一動點P(m,0)(0<m<4),過點P作x軸的垂線交直線AB于點N,交拋物線于點M.
(1)求a的值;
(2)若PN:MN=1:3,求m的值;
(3)如圖2,在(2)的條件下,設動點P對應的位置是P1,將線段OP1繞點O逆時針旋轉(zhuǎn)得到OP2,旋轉(zhuǎn)角為α(0°<α<90°),連接AP2、BP2,求AP2+ BP2的最小值.
【答案】(1) (2) 3 (3)
【解析】分析:(1)把A點坐標代入可得到關于a的方程,可求得a的值;
(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由條件可得到關于m的方程,則可求得m的值;
(3)在y軸上取一點Q,使,可證得△P2OB∽△QOP2,則可求得Q點坐標,則可把AP2+BP2化為AP2+QP2,利用三角形三邊關系可知當A、P2、Q三點在一條線上時有最小值,則可求得答案.
詳解:(1)∵A(4,0)在拋物線上,
∴0=16a+4(a+2)+2,解得a=-;
(2)由(1)可知拋物線解析式為y=-x2+x+2,令x=0可得y=2,
∴OB=2,
∵OP=m,
∴AP=4-m,
∵PM⊥x軸,
∴△OAB∽△PAN,
∴,即,
∴PN=(4-m),
∵M在拋物線上,
∴PM=-m2+m+2,
∵PN:MN=1:3,
∴PN:PM=1:4,
∴-m2+m+2=4×(4-m),
解得m=3或m=4(舍去);
(3)在y軸上取一點Q,使,如圖,
由(2)可知P1(3,0),且OB=2,
∴,且∠P2OB=∠QOP2,
∴△P2OB∽△QOP2,
∴,
∴當Q(0,)時QP2=BP2,
∴AP2+BP2=AP2+QP2≥AQ,
∴當A、P2、Q三點在一條線上時,AP2+QP2有最小值,
∵A(4,0),Q(0,),
∴AQ=,即AP2+BP2的最小值為.
科目:初中數(shù)學 來源: 題型:
【題目】李老師準備購買一套小戶型商品房,他去售樓處了解情況得知.該戶型商品房的單價是5000元/,面積如圖所示(單位:m,衛(wèi)生間的寬未定,設寬為xm),售房部為李老師提供了以下兩種優(yōu)惠方案:
方案一:整套房的單價為5000元/,其中廚房可免費贈送一半的面積;
方案二:整套房按原銷售總金額的9.5折出售.
(1)用含x的代數(shù)式表示該戶型商品房的面積及方案一、方案二中購買一套該戶型商品房的總金額;
(2)當x=2時,通過計算說明哪種方案更優(yōu)惠?優(yōu)惠多少元?
(3)李老師因現(xiàn)金不夠,于2019年10月在建行借了18萬元住房貸款,貸款期限為10年,從開始貸款的下一個月起逐月償還,貸款月利率是0.5%,每月應還的貸款本金數(shù)額為1500元(每月還款數(shù)額=每月應還的貸款本金數(shù)額+月利息,月利息=上月所剩貸款本金數(shù)額×月利率),假設貸款月利率不變,請求出李老師在借款后第n(,n是正整數(shù))個月的還款數(shù)額.(用n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在Rt△ACB中,∠ACB=90°,點D是AB的中點,點E是CD的中點,過點C作CF∥AB叫AE的延長線于點F.
(1)求證:△ADE≌△FCE;
(2)若∠DCF=120°,DE=2,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,兩點在數(shù)軸上,點對應的數(shù)為-15,,兩點分別從點點同時出發(fā),沿數(shù)軸正方向勻速運動,速度分別為每秒3個單位長度和每秒2個單位長度.
(1)數(shù)軸上點對應的數(shù)是
(2)經(jīng)過多少秒時,兩點分別到原點的距離相等?
(3)當兩點分別到點的距離相等時,在數(shù)軸上點對應的數(shù)是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】珠江流域某江段江水流向經(jīng)過B、C、D三點拐彎后與原來相同,如圖,若∠ABC=120°,∠BCD=80°,則∠CDE=__________度.
(第22題)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,與兩個角的角平分線相交于點.
(1)如圖1,若,求的度數(shù).
(2)如圖2,若,,試寫出與之間的數(shù)量關系并證明你的結(jié)論.
(3)若,,,請直接用含有,的代數(shù)式表示出.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】端午節(jié)期間,某品牌粽子經(jīng)銷商銷售甲、乙兩種不同味道的粽子,已知一個甲種粽子和一個乙種粽子的進價之和為10元,每個甲種粽子的利潤是4元,每個乙種粽子的售價比其進價的2倍少1元,小王同學買4個甲種粽子和3個乙種粽子一共用了61元.
(1)甲、乙兩種粽子的進價分別是多少元?
(2)在(1)的前提下,經(jīng)銷商統(tǒng)計發(fā)現(xiàn):平均每天可售出甲種粽子200個和乙種粽子150個.如果將兩種粽子的售價各提高1元,則每天將少售出50個甲種粽子和40個乙種粽子.為使每天獲取的利潤更多,經(jīng)銷商決定把兩種粽子的價格都提高x元.在不考慮其他因素的條件下,當x為多少元時,才能使該經(jīng)銷商每天銷售甲、乙兩種粽子獲取的利潤為1190元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com