如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上。

(1)求拋物線的解析式;

(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。

 

【答案】

解:(1)把A(1,-4)代入,得k=2,∴。

令y=0,解得:x=3,∴B的坐標(biāo)是(3,0)。

∵A為頂點(diǎn),∴設(shè)拋物線的解析為。

把B(3,0)代入得:4a-4=0,解得a=1。

∴拋物線的解析式為

(2)存在。

∵OB=OC=3,OP=OP,∴當(dāng)∠POB=∠POC時(shí),△POB≌△POC。

此時(shí)PO平分第二象限,即PO的解析式為y=-x。

設(shè)P(m,-m),則,解得,舍去)。

∴P(。

(3)①如圖,當(dāng)∠Q1AB=90°時(shí),△DAQ1∽△DOB,

,即!。

,即。

②如圖,當(dāng)∠Q2BA=90°時(shí),△BOQ2∽△DOB,

,即

,即

③如圖,當(dāng)∠AQ3B=90°時(shí),作AE⊥y軸于E,則△BOQ3∽△Q3EA,

,即。

,解得OQ3=1或3,即Q3(0,-1),Q4(0,-3)。

綜上,Q點(diǎn)坐標(biāo)為或(0,-1)或(0,-3)。

【解析】

試題分析:(1)已知點(diǎn)A坐標(biāo)可確定直線AB的解析式,進(jìn)一步能求出點(diǎn)B的坐標(biāo).點(diǎn)A是拋物線的頂點(diǎn),那么可以將拋物線的解析式設(shè)為頂點(diǎn)式,再代入點(diǎn)B的坐標(biāo),依據(jù)待定系數(shù)法可解。

(2)首先由拋物線的解析式求出點(diǎn)C的坐標(biāo),在△POB和△POC中,已知的條件是公共邊OP,若OB與OC不相等,那么這兩個(gè)三角形不能構(gòu)成全等三角形;若OB等于OC,那么還要滿足的條件為:∠POC=∠POB,各自去掉一個(gè)直角后容易發(fā)現(xiàn),點(diǎn)P正好在第二象限的角平分線上,聯(lián)立直線y=-x與拋物線的解析式,直接求交點(diǎn)坐標(biāo)即可,同時(shí)還要注意點(diǎn)P在第二象限的限定條件。

(3)分別以A、B、Q為直角頂點(diǎn),分類進(jìn)行討論,找出相關(guān)的相似三角形,依據(jù)對(duì)應(yīng)線段成比例進(jìn)行求解即可。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某農(nóng)場(chǎng)為防風(fēng)治沙在一山坡上種植一片樹苗,并安裝了自動(dòng)噴灌設(shè)備.一瞬間,噴水頭噴出的水流呈拋物線形.如圖所示,建立直角坐標(biāo)系.已知噴水頭B高出地面1.5米,噴水管與山坡所成的夾角∠BOA約63°,水流最高精英家教網(wǎng)點(diǎn)C的坐標(biāo)為(2,3.5).    
(1)求此水流拋物線的解析式;
(2)求山坡所在的直線OA的解析式(解析式中的系數(shù)精確到0.1);
(3)計(jì)算水噴出后落在山坡上的最遠(yuǎn)距離OA(精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考必備’04全國(guó)中考試題集錦·數(shù)學(xué) 題型:044

如圖,已知拋物y=x2-ax+a+2與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)D(0,8),直線DC平行于x軸,交拋物線于另一點(diǎn)C.動(dòng)點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)C出發(fā),沿C→D運(yùn)動(dòng).同時(shí)、點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)A出發(fā),沿A→B運(yùn)動(dòng).連結(jié)PQ、CB.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

(1)求a的值;

(2)當(dāng)t為何值時(shí),PQ平行于y軸;

(3)當(dāng)四邊形PQBC的面積等于14時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(福建龍巖卷)數(shù)學(xué)(解析版) 題型:解答題

在平面直角坐標(biāo)系xoy中, 一塊含60°角的三角板作如圖擺放,斜邊 AB在x軸上,直角頂點(diǎn)C在y軸正半軸上,已知點(diǎn)A(-1,0).

   (1)請(qǐng)直接寫出點(diǎn)B、C的坐標(biāo):B(   ,   )、C(   ,   );并求經(jīng)過A、B、C三點(diǎn)的拋物

線解析式;

   (2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點(diǎn)E放在線段

AB上(點(diǎn)E是不與A、B兩點(diǎn)重合的動(dòng)點(diǎn)),并使ED所在直線經(jīng)過點(diǎn)C. 此時(shí),EF所在直線與(1)中的拋物線交于第一象限的點(diǎn)M.

 ①設(shè)AE=x,當(dāng)x為何值時(shí),△OCE∽△OBC;

 ②在①的條件下探究:拋物線的對(duì)稱軸上是否存在點(diǎn)P使△PEM是等腰三角形,若存在,請(qǐng)求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣西省貴港市九年級(jí)第一次教學(xué)質(zhì)量監(jiān)測(cè)數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

如圖所示,在平面直角坐標(biāo)系中,頂點(diǎn)為()的拋物線交軸于點(diǎn),交軸于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)), 已知點(diǎn)坐標(biāo)為(,).

 

 

 

 

 

 

 

(1)求此拋物線的解析式;

(2)過點(diǎn)作線段的垂線交拋物線于點(diǎn),

如果以點(diǎn)為圓心的圓與直線相切,請(qǐng)判斷拋物

線的對(duì)稱軸與⊙有怎樣的位置關(guān)系,并給出證明;

(3)已知點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),且位于,

兩點(diǎn)之間,問:當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),

面積最大?并求出此時(shí)點(diǎn)的坐標(biāo)和的最大面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

.如圖,已 知直線 交坐標(biāo)軸于兩點(diǎn),以線段為邊向上作正方形,過點(diǎn)的拋物線與直線另一個(gè)交點(diǎn)為

(1)請(qǐng)直接寫出點(diǎn)的坐標(biāo);

(2)求拋物線的解析式;

(3)若正方形以每秒個(gè)單位長(zhǎng)度的速度沿射線下滑,直至頂點(diǎn)落在x軸上時(shí)停止.設(shè)正方形落在軸下方部分的面積為,求關(guān)于滑行時(shí)間的函數(shù)關(guān)系式,并寫出相應(yīng)自變量的取值范圍;

(4)在(3)的條件下,拋物線與正方形一起平移,同時(shí)停止,求拋物線上兩點(diǎn)間的拋物

線弧所掃過的面積.

 


查看答案和解析>>

同步練習(xí)冊(cè)答案