【問(wèn)題背景】
若矩形的周長(zhǎng)為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長(zhǎng)為x,面積為s,則s與x的函數(shù)關(guān)系式為:>0),利用函數(shù)的圖象或通過(guò)配方均可求得該函數(shù)的最大值.
【提出新問(wèn)題】
若矩形的面積為1,則該矩形的周長(zhǎng)有無(wú)最大值或最小值?若有,最大(小)值是多少?
【分析問(wèn)題】
若設(shè)該矩形的一邊長(zhǎng)為x,周長(zhǎng)為y,則y與x的函數(shù)關(guān)系式為:(x>0),問(wèn)題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗耍
【解決問(wèn)題】
借鑒我們已有的研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)(x>0)的最大(小)值.
(1)實(shí)踐操作:填寫下表,并用描點(diǎn)法畫出函數(shù)(x>0)的圖象:
 x    1 2 3 4
 y       
(2)觀察猜想:觀察該函數(shù)的圖象,猜想當(dāng)x=______時(shí),函數(shù)(x>0)有最______值(填“大”或“小”),是______.
(3)推理論證:?jiǎn)栴}背景中提到,通過(guò)配方可求二次函數(shù)>0)的最大值,請(qǐng)你嘗試通過(guò)配方求函數(shù)(x>0)的最大(。┲,以證明你的猜想.〔提示:當(dāng)x>0時(shí),

【答案】分析:(1)分別把表中x的值代入所得函數(shù)關(guān)系式求出y的對(duì)應(yīng)值填入表中,并畫出函數(shù)圖象即可;
(2)根據(jù)(1)中函數(shù)圖象的頂點(diǎn)坐標(biāo)直接得出結(jié)論即可;
(3)利用配方法把原式化為平方的形式,再求出其最值即可.
解答:解:(1)
x1234
y654568


(2)由函數(shù)圖象可知,其頂點(diǎn)坐標(biāo)為(1,4),故當(dāng)x=1時(shí)函數(shù)有最小值,最小值為4,
故答案為:1、小、4;

(3)證明:
y=2[(2+]
=2[(2-2++2]
=2(-2+4
當(dāng)-=0時(shí),y的最小值是4,即x=1時(shí),y的最小值是4.
點(diǎn)評(píng):本題考查的是二次函數(shù)的最值及配方法的應(yīng)用,能利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•達(dá)州)【問(wèn)題背景】
若矩形的周長(zhǎng)為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長(zhǎng)為x,面積為s,則s與x的函數(shù)關(guān)系式為:s=-x2+
1
2
x(x
>0),利用函數(shù)的圖象或通過(guò)配方均可求得該函數(shù)的最大值.
【提出新問(wèn)題】
若矩形的面積為1,則該矩形的周長(zhǎng)有無(wú)最大值或最小值?若有,最大(。┲凳嵌嗌伲
【分析問(wèn)題】
若設(shè)該矩形的一邊長(zhǎng)為x,周長(zhǎng)為y,則y與x的函數(shù)關(guān)系式為:y=2(x+
1
x
)
(x>0),問(wèn)題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗耍
【解決問(wèn)題】
借鑒我們已有的研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)y=2(x+
1
x
)
(x>0)的最大(小)值.
(1)實(shí)踐操作:填寫下表,并用描點(diǎn)法畫出函數(shù)y=2(x+
1
x
)
(x>0)的圖象:
 x  
1
4
 
1
3
 
1
2
 1  2  3  4
 y              
(2)觀察猜想:觀察該函數(shù)的圖象,猜想當(dāng)x=
1
1
時(shí),函數(shù)y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理論證:?jiǎn)栴}背景中提到,通過(guò)配方可求二次函數(shù)s=-x2+
1
2
x(x
>0)的最大值,請(qǐng)你嘗試通過(guò)配方求函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲担宰C明你的猜想.〔提示:當(dāng)x>0時(shí),x=(
x
)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題背景:
如圖1,矩形鐵片ABCD的長(zhǎng)為2a,寬為a; 為了要讓鐵片能穿過(guò)直徑為的圓孔,需對(duì)鐵片進(jìn)行處理(規(guī)定鐵片與圓孔有接觸時(shí)鐵片不能穿過(guò)圓孔);

探究發(fā)現(xiàn):
【小題1】如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點(diǎn),若將矩形鐵片的四個(gè)角去掉,只余下四邊形MNPQ,則此時(shí)鐵片的形狀是 _______,給出證明,并通過(guò)計(jì)算說(shuō)明此時(shí)鐵片都能穿過(guò)圓孔;

拓展遷移:
【小題2】如圖3,過(guò)矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點(diǎn)E、F(不與端點(diǎn)重合),沿著這條直線將矩形 鐵片切割成兩個(gè)全等的直角梯形鐵片;
 
①當(dāng)BE=DF=時(shí),判斷直角梯形鐵片EBAF能否穿過(guò)圓孔,并說(shuō)明理由;
②為了能使直角梯形鐵片EBAF順利穿過(guò)圓孔,請(qǐng)直接寫出線段BE的長(zhǎng)度的取值范圍 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇省江陰市石莊中學(xué)九年級(jí)中考模擬考試數(shù)學(xué)試卷(帶解析) 題型:解答題

問(wèn)題背景:
如圖1,矩形鐵片ABCD的長(zhǎng)為2a,寬為a; 為了要讓鐵片能穿過(guò)直徑為的圓孔,需對(duì)鐵片進(jìn)行處理(規(guī)定鐵片與圓孔有接觸時(shí)鐵片不能穿過(guò)圓孔);

探究發(fā)現(xiàn):
【小題1】如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點(diǎn),若將矩形鐵片的四個(gè)角去掉,只余下四邊形MNPQ,則此時(shí)鐵片的形狀是 _______,給出證明,并通過(guò)計(jì)算說(shuō)明此時(shí)鐵片都能穿過(guò)圓孔;

拓展遷移:
【小題2】如圖3,過(guò)矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點(diǎn)E、F(不與端點(diǎn)重合),沿著這條直線將矩形 鐵片切割成兩個(gè)全等的直角梯形鐵片;
 
①當(dāng)BE=DF=時(shí),判斷直角梯形鐵片EBAF能否穿過(guò)圓孔,并說(shuō)明理由;
②為了能使直角梯形鐵片EBAF順利穿過(guò)圓孔,請(qǐng)直接寫出線段BE的長(zhǎng)度的取值范圍 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年四川省達(dá)州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

【問(wèn)題背景】
若矩形的周長(zhǎng)為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長(zhǎng)為x,面積為s,則s與x的函數(shù)關(guān)系式為:>0),利用函數(shù)的圖象或通過(guò)配方均可求得該函數(shù)的最大值.
【提出新問(wèn)題】
若矩形的面積為1,則該矩形的周長(zhǎng)有無(wú)最大值或最小值?若有,最大(。┲凳嵌嗌?
【分析問(wèn)題】
若設(shè)該矩形的一邊長(zhǎng)為x,周長(zhǎng)為y,則y與x的函數(shù)關(guān)系式為:(x>0),問(wèn)題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗耍
【解決問(wèn)題】
借鑒我們已有的研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)(x>0)的最大(小)值.
(1)實(shí)踐操作:填寫下表,并用描點(diǎn)法畫出函數(shù)(x>0)的圖象:
 x    1 2 3 4
 y       
(2)觀察猜想:觀察該函數(shù)的圖象,猜想當(dāng)x=______時(shí),函數(shù)(x>0)有最______值(填“大”或“小”),是______.
(3)推理論證:?jiǎn)栴}背景中提到,通過(guò)配方可求二次函數(shù)>0)的最大值,請(qǐng)你嘗試通過(guò)配方求函數(shù)(x>0)的最大(。┲担宰C明你的猜想.〔提示:當(dāng)x>0時(shí),

查看答案和解析>>

同步練習(xí)冊(cè)答案