【題目】如圖,將周長為8的△ABC沿BC方向向右平移1個單位得到△DEF,則四邊形ABFD的周長為
科目:初中數學 來源: 題型:
【題目】在等腰△ABC中,AB=AC,則有BC邊上的中線,高線和∠BAC的平分線重合于AD(如圖一).若將等腰△ABC的頂點A向右平行移動后,得到△A′BC(如圖二),那么,此時BC邊上的中線、BC邊上的高線和∠BA′C的平分線應依次分別是 , , .(填A′D、A′E、A′F)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完成下面推理過程. 如圖:在四邊形ABCD中,∠A=106°﹣α,∠ABC=74°+α,BD⊥DC于點D,EF⊥DC于點F,求證:∠1=∠2
證明:∵∠A=106°﹣α,∠ABC=74°+α(已知)
∴∠A+∠ABC=180°
∴AD∥()
∴∠1=()
∵BD⊥DC,EF⊥DC(已知)
∴∠BDF=∠EFC=90°()
∴BD∥()
∴∠2=()
∴∠1=∠2()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以CB為半徑作⊙C,交AC于點D,交AC的延長線于點E,連接ED,BE.(1)求證:△ABD∽△AEB;(2)當時,求tanE;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經過A(﹣3,0),B(1,0),C(0,3)三點,其頂點為D,對稱軸是直線l,l與x軸交于點H.
(1)求該拋物線的解析式;
(2)若點P是該拋物線對稱軸l上的一個動點,求△PBC周長的最小值;
(3)如圖(2),若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設點E的橫坐標為m,△ADF的面積為S.
①求S與m的函數關系式;
②S是否存在最大值?若存在,求出最大值及此時點E的坐標; 若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數y=kx+b(k≠0)圖象過點(0,2),且與兩坐標軸圍成的三角形面積為2,則一次函數的解析式為( 。.
A.y=x+2
B.y=-x+2
C.y=x+2或y=-x+2
D.y=-x+2或y=x-2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平行四邊形ABCD中,對角線AC、BD交于點O , 點E是BC的中點 . 若OE=3cm , 則AB的長為( 。
A.3cm
B.6cm
C.9cm
D.12cm
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com