若x、y為正整數(shù),使得2xy能整除x2+y2-x,則x為完全平方數(shù).
證明:設(shè)x2+y2-x=2kxy(k為整數(shù)),
則關(guān)于y的二次方程y2-2kxy+(x2-x)=0的根中有一個y1(y)是整數(shù),另一個y2=2kx-y1也是整數(shù),
其判別式△=4[k2x2-(x2-x)]=4x[(k2-1)x+1]應(yīng)為完全平方數(shù).
由于x與(k2-1)x+1互質(zhì)(它們的最大公約數(shù)(x,(k2-1)x+1)=(x,1)=1),
所以,x是完全平方數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料并解答問題:
我國是最早了解和應(yīng)用勾股定理的國家之一,古代印度、希臘、阿拉伯等許多國家也都很重視對勾股定理的研究和應(yīng)用,古希臘數(shù)學(xué)家畢達哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達哥拉斯定理”.
關(guān)于勾股定理的研究還有一個很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個正整數(shù)稱為勾股數(shù)”,以下是畢達哥拉斯等學(xué)派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股數(shù).
方法2:若任取兩個正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長的△ABC是直角三角形;
(2)請根據(jù)方法1和方法2按規(guī)律填寫下列表格:
精英家教網(wǎng)
(3)某園林管理處要在一塊綠地上植樹,使之構(gòu)成如下圖所示的圖案景觀,該圖案由四個全等的直角三角形組成,要求每個三角形頂點處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個三角形最短邊上都植6棵樹,且每個三角形的各邊長之比為5:12:13,那么這四個直角三角形的邊長共需植樹
 
棵.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線M:y=x2+(m-1)x+(m-2)與x軸相交于A(x1,0),B(x2,0)兩點,且x1<x2
(Ⅰ)若x1x2<0,且m為正整數(shù),求拋物線M的解析式;
(Ⅱ)若x1<1,x2>1,求m的取值范圍;
(Ⅲ)試判斷是否存在m,使經(jīng)過點A和點B的圓與y軸相切于點C(0,2)?若存在,求出m的值;若不存在,試說明理由;
(Ⅳ)若直線l:y=kx+b過點F(0,7),與(Ⅰ)中的拋物線M相交于P,Q兩點,且使
PF
FQ
=
1
2
,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若整數(shù)m使
61+m
為正整數(shù),則m的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程kx2-(4k+1)x+4=0.
(1)當(dāng)k取何值時,方程有兩個實數(shù)根;
(2)若二次函數(shù)y=kx2-(4k+1)x+4的圖象與x軸兩個交點的橫坐標(biāo)均為整數(shù),且k為正整數(shù),求k值并用配方法求出拋物線的頂點坐標(biāo);
(3)若(2)中的拋物線與x軸交于A、B兩點,與y軸交于C點.將拋物線向上平移n個單位,使平移后得到的拋物線的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某數(shù)學(xué)興趣小組開展了一次活動,過程如下:
設(shè)∠BAC=θ(0°<θ<90°).現(xiàn)把小棒依次擺放在兩射線AB,AC之間,并使小棒兩端分別落在兩射線上.活動一:如圖所示,從點A1開始,依次向右擺放小棒,使小棒與小棒在兩端點處互相垂直,A1A2為第1根小棒.
數(shù)學(xué)思考:
(1)小棒能無限擺下去嗎?答:
.(填“能”或“不能”)
(2)設(shè)AA1=A1A2=A2A3=1.①θ=
22.5
22.5
度; ②若記小棒A2n-1A2n的長度為an(n為正整數(shù),如A1A2=a1,A3A4=a2,),求此時a2,a3的值,并直接寫出an(用含n的式子表示).

查看答案和解析>>

同步練習(xí)冊答案