如圖,AB是⊙O的直徑,過⊙O上的點E作⊙O的切線,交AB延長線于點C,過A點作AD⊥CE于點D,且與⊙O交于點F,連接AE、BF.
(1)AE是否為∠CAD的平分線,說明理由;
(2)若CB=2,CE=4,求⊙O的半徑及BF的長.

【答案】分析:(1)AE是∠CAD的平分線.理由:連接OE,首先利用切線性質得到OE⊥GE,而AD⊥CE,由此得到OE∥AD,然后利用平行線的性質和等腰三角形的性質即可求解;
(2)設⊙O的半徑為r,在Rt△CEO中利用勾股定理可以列出關于r的方程,解方程求出r,設BF與OE交于點G,然后利用已知條件和平行線的性質證明△OBG∽△OCE,接著他相似三角形的性質即可求解.
解答:解:(1)AE是∠CAD的平分線.
理由:連接OE,
∵CE是⊙O的切線,
∴OE⊥GE,
∵AD⊥CE,
∴OE∥AD,
∴∠OEA=∠DAE,
∵OE=OA,
∴∠CAE=∠OEA,
∴CAE∠=∠DAE,
∴AE是∠CAD的角平分線;

(2)設⊙O的半徑為r,
在Rt△CEO中,∵CO2=OE2+CE2,CB=2,CE=4,
∴(2+r)2=r2+16,
∴r=3,
設BF與OE交于點G,
∵∠AFB=90°,
∴BF⊥AD,∵AD⊥CE,
∴BF∥CD,
∵OE⊥EC,
∴OE⊥BF,
∴BG=GF,
∵BF∥CD,
∴△OBG∽△OCE,
∴OB:OC=BG:CE,
,
∴BG=,
∴BF=2BG=
點評:本題考查了圓的切線性質,平行線的性質與判定及相似三角形的性質與判定.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側面的一部分(如圖1),它的側面邊緣上有兩條圓弧(如圖2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計,π取3.1416)
(1)計算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計算出遮雨罩一個側面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:初中數(shù)學解題思路與方法 題型:047

已知如圖,AB是半圓直經,△ACD內接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習冊答案