【題目】如圖,點I為△ABC的內心,AB=4,AC=3,BC=2,將∠ACB平移使其頂點與I重合,則圖中陰影部分的周長為___________.

【答案】4

【解析】

連接AIBI,因為三角形的內心是角平分線的交點,所以AI是∠CAB的平分線,由平行的性質和等角對等邊可得:AD=DI,同理BE=EI,所以圖中陰影部分的周長就是邊AB的長.

連接AI、BI

∵點IABC的內心,

AI平分∠CAB,

∴∠CAI=BAI,

由平移得:AC//DI

∴∠CAI=AID,

∴∠BAI=AID,

AD=DI,

同理可得:BE=EI,

∴△DIE的周長=DE+DI+EI=DE+AD+BE=AB=4,

即圖中陰影部分的周長為4,

故答案為:4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠B=100° ,按要求完成畫圖并解答問題:

1)畫出ABC的高CE,中線AF,角平分線BD,且AF所在直線交CE于點H,BDAF相交于點G;

2)若∠FAB=40°,求∠AFB的度數(shù)和∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為的正方形先向上平移,再向右平移,得到正方形,則陰影部分面積為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形中,,在、上分別找一點,使周長最小時,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為發(fā)展學生的核心素養(yǎng),培養(yǎng)學生的綜合能力,某學校計劃開設四門選修課:樂器、舞蹈、繪畫、書法,學校采取隨機抽樣的方法進行問卷調查每個被調查的學生必須選擇而且只能選擇其中一門對調查結果進行整理,繪制成如下兩幅不完整的統(tǒng)計圖請結合圖中所給信息解答下列問題:

本次調查的學生共有______人,在扇形統(tǒng)計圖中,m的值是______

分別求出參加調查的學生中選擇繪畫和書法的人數(shù),并將條形統(tǒng)計圖補充完整.

該校共有學生2000人,估計該校約有多少人選修樂器課程?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在中,上一點,平分,.

1)求證:

2)如圖(2),若,連接為邊上一點,滿足,連接. ①求的度數(shù);

②若平分,試說明:平分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x26xk2=0(k為常數(shù)).

(1)求證:方程有兩個不相等的實數(shù)根;

(2)設x1,x2為方程的兩個實數(shù)根,且x1+2x2=14,試求出方程的兩個實數(shù)根和k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,線段,,一機器人在點處.

(1)若,求線段的長.

(2)在(1)的條件下,若機器人從點出發(fā),以的速度沿著的三條邊逆時針走一圈后回到點,設行走的時間為,則當為何值時,是以點為直角頂點的直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,已知點C在線段AB上,且AC=6cm,BC=4cm,點M,N分別是AC,BC的中點,求線段MN的長度.

(2)在(1)中,如果AC=acm,BC=bcm,其它條件不變,你能猜出MN的長度嗎?請你用一句簡潔的話表述你發(fā)現(xiàn)的規(guī)律.

(3)對于(1)題,如果我們這樣敘述它:已知線段AC=6cm,BC=4cm,點C在直線AB上,點M,N分別是AC,BC的中點,求MN的長度.結果會有變化嗎?如果有,求出結果.

查看答案和解析>>

同步練習冊答案