(2010•黔南州)如果,則=( )
A.
B.1
C.
D.2
【答案】分析:已知,就可以變形為a=2b,把它代入所要求的式子就可以求出式子的值.
解答:解:∵,
∴a=2b,
=
故選C.
點(diǎn)評(píng):把已知中的,變形成a=2b,是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省蘇州市工業(yè)園區(qū)八年級(jí)第二學(xué)期數(shù)學(xué)卷 題型:單選題

(2010•黔南州)如果,則=( 。

A.B.1C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(30)(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A坐標(biāo)為(2,4),直線(xiàn)x=2與x軸相交于點(diǎn)B,連接OA,拋物線(xiàn)y=x2從點(diǎn)O沿OA方向平移,與直線(xiàn)x=2交于點(diǎn)P,頂點(diǎn)M到A點(diǎn)時(shí)停止移動(dòng).
(1)求線(xiàn)段OA所在直線(xiàn)的函數(shù)解析式;
(2)設(shè)拋物線(xiàn)頂點(diǎn)M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點(diǎn)P的坐標(biāo);
②當(dāng)m為何值時(shí),線(xiàn)段PB最短;
(3)當(dāng)線(xiàn)段PB最短時(shí),相應(yīng)的拋物線(xiàn)上是否存在點(diǎn)Q,使△QMA的面積與△PMA的面積相等?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省臺(tái)州市臨海市杜橋?qū)嶒?yàn)中學(xué)初三第四次統(tǒng)練數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A坐標(biāo)為(2,4),直線(xiàn)x=2與x軸相交于點(diǎn)B,連接OA,拋物線(xiàn)y=x2從點(diǎn)O沿OA方向平移,與直線(xiàn)x=2交于點(diǎn)P,頂點(diǎn)M到A點(diǎn)時(shí)停止移動(dòng).
(1)求線(xiàn)段OA所在直線(xiàn)的函數(shù)解析式;
(2)設(shè)拋物線(xiàn)頂點(diǎn)M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點(diǎn)P的坐標(biāo);
②當(dāng)m為何值時(shí),線(xiàn)段PB最短;
(3)當(dāng)線(xiàn)段PB最短時(shí),相應(yīng)的拋物線(xiàn)上是否存在點(diǎn)Q,使△QMA的面積與△PMA的面積相等?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年貴州省黔南州中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A坐標(biāo)為(2,4),直線(xiàn)x=2與x軸相交于點(diǎn)B,連接OA,拋物線(xiàn)y=x2從點(diǎn)O沿OA方向平移,與直線(xiàn)x=2交于點(diǎn)P,頂點(diǎn)M到A點(diǎn)時(shí)停止移動(dòng).
(1)求線(xiàn)段OA所在直線(xiàn)的函數(shù)解析式;
(2)設(shè)拋物線(xiàn)頂點(diǎn)M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點(diǎn)P的坐標(biāo);
②當(dāng)m為何值時(shí),線(xiàn)段PB最短;
(3)當(dāng)線(xiàn)段PB最短時(shí),相應(yīng)的拋物線(xiàn)上是否存在點(diǎn)Q,使△QMA的面積與△PMA的面積相等?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年天津市東麗區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A坐標(biāo)為(2,4),直線(xiàn)x=2與x軸相交于點(diǎn)B,連接OA,拋物線(xiàn)y=x2從點(diǎn)O沿OA方向平移,與直線(xiàn)x=2交于點(diǎn)P,頂點(diǎn)M到A點(diǎn)時(shí)停止移動(dòng).
(1)求線(xiàn)段OA所在直線(xiàn)的函數(shù)解析式;
(2)設(shè)拋物線(xiàn)頂點(diǎn)M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點(diǎn)P的坐標(biāo);
②當(dāng)m為何值時(shí),線(xiàn)段PB最短;
(3)當(dāng)線(xiàn)段PB最短時(shí),相應(yīng)的拋物線(xiàn)上是否存在點(diǎn)Q,使△QMA的面積與△PMA的面積相等?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案