【題目】如圖,拋物線的對稱軸為直線,與軸的一個交點在之間,其部分圖象如圖所示.則下列結(jié)論:;②;③;④為實數(shù));,,是該拋物線上的點,則,正確的個數(shù)有(

A. 4 B. 3 C. 2 D. 1

【答案】B

【解析】

根據(jù)拋物線的對稱軸可判斷①,由拋物線與x軸的交點及拋物線的對稱性可判斷②,由x=-1y>0可判斷③,由x=-2時函數(shù)取得最大值可判斷④,根據(jù)拋物線的開口向下且對稱軸為直線x=-2知圖象上離對稱軸水平距離越小函數(shù)值越大,可判斷⑤

∵拋物線的對稱軸為直線x=-=-2,

4a-b=0,所以①正確;

∵與x軸的一個交點在(-3,0)和(-4,0)之間,

∴由拋物線的對稱性知,另一個交點在(-1,0)和(0,0)之間,

∴拋物線與y軸的交點在y軸的負半軸,即c<0,故②正確;

∵由②知,x=-1y>0,且b=4a,

a-b+c=a-4a+c=-3a+c>0,

所以③正確;

由函數(shù)圖象知當x=-2時,函數(shù)取得最大值,

4a-2b+cat2+bt+c,

4a-2b≥at2+bt(t為實數(shù)),故④錯誤;∵拋物線的開口向下,且對稱軸為直線x=-2,

∴拋物線上離對稱軸水平距離越小,函數(shù)值越大,

y1<y3<y2,故⑤錯誤;

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.

(1)請直接寫出D點的坐標.

(2)求二次函數(shù)的解析式.

(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有長為24m的籬笆,一面利用墻(墻的最大可用長度a10m),圍成中間隔有一道籬笆的長方形花圃.設花圃的寬ABxm,面積為Sm2

1)求Sx的函數(shù)關系式;

2)如果要圍成面積為45m2的花圃,AB的長是多少米?

3)能圍成面積比45 m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著粵港澳大灣區(qū)建設的加速推進,廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計,目前廣東5G基站的數(shù)量約1.5萬座,計劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達到17.34萬座。

1)計劃到2020年底,全省5G基站的數(shù)量是多少萬座?;

2)按照計劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABC內(nèi)接于⊙OAF是⊙O的弦,AFBC,垂足為D,點E為上一點,且BE=CF,

1)求證:AE是⊙O的直徑;

2)若∠ABC=EAC,AE=4,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四張完全相同的卡片上,分別畫有圓、正方形、等邊三角形和線段,現(xiàn)從中隨機抽取兩張,卡片上畫的恰好都是中心對稱圖形的概率為( 。

A.1B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】溫州市政府計劃投資百億元開發(fā)甌江口新區(qū),打造出一個東方時尚島、海上新溫州.為了解溫州市民對甌江口新區(qū)的關注情況,某學校數(shù)學興趣小組隨機采訪部分溫州市民,對采訪情況制作了統(tǒng)計圖表的一部分如下:

關注情況

頻數(shù)

頻率

A.高度關注

m

0.1

B.一般關注

100

0.5

C.不關注

30

n

D.不知道

50

0.25

1)根據(jù)上述統(tǒng)計表可得此次采訪的人數(shù)為   人;m   n   ;

2)根據(jù)以上信息補全條形統(tǒng)計圖;

3)根據(jù)上述采訪結(jié)果,估計25000名溫州市民中高度關注甌江口新區(qū)的市民約   人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場舉辦抽獎活動,規(guī)則如下:在不透明的袋子中有2個紅球和2個黑球,這些球除顏色外都相同,顧客每次摸出一個球,若摸到紅球,則獲得1份獎品,若摸到黑球,則沒有獎品。

1)如果小芳只有一次摸球機會,那么小芳獲得獎品的概率為  ;

2)如果小芳有兩次摸球機會(摸出后不放回),求小芳獲得2份獎品的概率。(請用畫樹狀圖列表等方法寫出分析過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了美化環(huán)境,學校準備在如圖所示的矩形ABCD空地上進行綠化,規(guī)劃在中間的一塊四邊形MNPQ上種花,其余的四塊三角形上鋪設草坪,要求AMANCPCQ,已知BC30米,AB42米,設ANx米,種花的面積為y1平方米,草坪面積y2平方米.

1)分別求y1y2x之間的函數(shù)關系式(不要求寫出自變量的取值范圍);

2)當AN的長為多少米時,種花的面積為640平方米?

3)若種花每平方米需200元,鋪設草坪每平方米需100元,現(xiàn)設計要求種花的面積不大于640平方米,設學校所需費用W(元),求Wx之間的函數(shù)關系式,并求出學校所需費用的最大值.

查看答案和解析>>

同步練習冊答案