精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(2,1)B(1,-2),C(3,-1)P(m,n)是△ABC的邊AB上一點.

(1)畫出△A1B1C1,使△A1B1C1與△ABC關于點O成中心對稱,并寫出點A、P的對應點A1、P1的坐標.

(2)以原點O為位似中心,位似比為12,在y軸的左側,畫出將△A1B1C1放大后的△A2B2C2,并分別寫出點A1、P1的對應點A2、P2的坐標.

(3)sinB2A2C2的值.

【答案】(1)畫圖見解析;A1(-2,-1)P1(-m,-n)(2)畫圖見解析,A2(-4,-2),P2(-2m,-2n);(3)sinB2A2C2=.

【解析】

(1)作出ABC各點關于原點的對稱點,再順次連接,再根據原點對稱圖形性質求出A1、P1的坐標;

(2)利用位似圖形的性質得出對應點位置即可得出答案;

(3)證實ABC為等腰直角三角形及ABCA2 B2C2相似即可求出結果.

解:(1)如圖,A1(-2,-1)P1(-m,-n)

(2)如圖,A2(-4,-2),P2(-2m,-2n);

(3) AC=,BC=,AB=

,AC=BC

ABC為等腰直角三角形,

又∵△ABCA1B1C1關于原點對稱,A1B1C1A2 B2C2相似,

ABCA2 B2C2相似,A2 B2C2是等腰直角三角形,

sinB2A2C2= sin45°=.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,點O為平面直角坐標系的原點,點Ax軸上,△OAB是邊長為4的等邊三角形,以O為旋轉中心,將△OAB按順時針方向旋轉60°,得到△OA′B′,那么點A′的坐標為(  )

A. (2,2 B. (﹣2,4) C. (﹣2,2 D. (﹣2,2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們把1,12,3,5,8,13,21,組數稱為斐波那契數列,為了進一步研究,依次以這列數為半徑作90°圓弧,弧P1P2,弧P2P3,弧P3P4,得到斐波那契螺旋線,然后依次連接P1P2,P2P3,P3P4得到螺旋折線(如圖),已知點P10,1),P2(﹣1,0),P30,﹣1),則該折線上P10的點的坐標為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2018年全國青少年禁毒知識競賽開始以來,永州市青少年學生躍參如,掀起了學習禁毒知識的熱潮,禁毒知識競賽的成績分為四個等級:優(yōu)秀,良好,及格,不及格.為了了解我市廣大學生參加禁毒知識競賽的成績,抽取了部分學生的成績,根據抽查結果,繪制了如下兩幅不完整的統(tǒng)計圖

1)本次抽查的人數是   

2)扇形統(tǒng)計圖中不及格學生所占的圓心角的度數為   度;

3)補全條形統(tǒng)計圖;

4)若某校有2000名學生,請你估計該校學生知識競賽成績?yōu)?/span>優(yōu)秀良好兩個等級共有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形是平行四邊形,以AB為直徑的經過點D, E上一點,

(1)判斷CD的位置關系,并說明理由;

(2) BC=2 .求陰影部分的面積.(結果保留π 的形式)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數ymx2﹣(2m+1x+m5的圖象與x軸有兩個公共點.

1)求m的取值范圍;

2)若m取滿足條件的最小的整數,當nx1時,函數值y的取值范圍是﹣6y24,求n的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是邊ADCD上的點,且EAD的中點,FC3DF,連接EF并延長交BC的延長線于點G

1)求證:△ABE∽△DEF

2)若正方形的邊長為8,求△BEG的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為了豐富學生課余生活,計劃開設以下課外活動項目:A—版畫,B—機器人,C—航模,D—園藝種植.為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查(每位學生必須選且只能選一個項目),并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調查的學生共有 人;扇形統(tǒng)計圖中,“D—園藝種植的學生人數所占圓心角的度數是 °

(2)請你將條形統(tǒng)計圖補充完整;

(3)若該校學生總數為1000,試估計該校學生中最喜歡機器人和最喜歡航模項目的總人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在足夠大的空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.

(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;

(2)求矩形菜園ABCD面積的最大值.

查看答案和解析>>

同步練習冊答案