【題目】如圖,點E為正方形ABCD中AD邊上的一個動點,AB=16,以BE為邊畫正方形BEFG,邊EF與邊CD交于點H.

(1)當E為邊AD的中點時,求DH的長;
(2)當tan∠ABE= 時,連接CF,求CF的長;
(3)連接CE,求△CEF面積的最小值.

【答案】
(1)

解:∵四邊形ABCD和四邊形BGFE是正方形,

∴∠D=∠A=∠BEF=90°,

∴∠AEB+∠DEH=∠DEH+∠DHE=90°,

∴∠AEB=∠DHE,

∴△EDH∽△BAE,

,

∵E為邊AD的中點,

∴DE=AE=8,

,

∴DH=4;


(2)

解:過F作FG⊥DC于點G,F(xiàn)M⊥AD,交AD的延長線于M,連接CF,

∵tan∠ABE= ,AB=16,

∴AE=12,

∴DE=4,

∵∠MEF+∠AEB=∠AEB+∠ABE=90°,

∴∠MEF=∠ABE,

∴tan∠MEF=

∴ME=16,F(xiàn)M=12,

∴DM=12,

∴DM=MF,

∴四邊形DGFM是正方形,

∴FG=12,HG=9,

∴CG=4,

∴FC= =4


(3)

解:∵SCEF=SCHF+SCHE= CHEM,

∵△EMF≌△BAE,

∴EM=AB=16,

∴SCEF=8CH,

∵△EDH∽△BAE,

,

設AE為x,則DH= (﹣x2+16x)=﹣ (x﹣8)2+4≤4,

∴DH≤4,

∴CH≥12,CH最小值是12,

∴△CEF面積的最小值是96


【解析】(1)根據(jù)正方形的性質(zhì)得到∠D=∠A=∠BEF=90°,根據(jù)余角的性質(zhì)得到∠AEB=∠DHE,根據(jù)相似三角形的想知道的 ,代入數(shù)據(jù)即可得到結論;(2)過F作FG⊥DC于點G,F(xiàn)M⊥AD,交AD的延長線于M,連接CF,根據(jù)已知條件得到AE=12,求得DE=4,根據(jù)余角的性質(zhì)得到∠MEF=∠ABE,等量代換得到tan∠MEF= 求得ME=16,F(xiàn)M=12,根據(jù)勾股定理即可得到結論;(3)由于SCEF=SCHF+SCHE= CHEM,根據(jù)全等三角形的性質(zhì)得到EM=AB=16,求得SCEF=8CH,根據(jù)相似三角形的性質(zhì)得到 ,設AE為x,于是得到DH= (﹣x2+16x)=﹣ (x﹣8)2+4≤4,即可得到結論.
【考點精析】本題主要考查了正方形的性質(zhì)和相似三角形的性質(zhì)的相關知識點,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;對應角相等,對應邊成比例的兩個三角形叫做相似三角形才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】問題背景
在數(shù)學活動課上,張老師要求同學們拿兩張大小不同的矩形紙片進行旋轉(zhuǎn)變換探究活動.如圖1,在矩形紙片ABCD和矩形紙片EFGH中,AB=1,AD=2,且EF>AD,F(xiàn)G>AB,點E是AD的中點,矩形紙片EFGH以點E為旋轉(zhuǎn)中心進行逆時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中會產(chǎn)生怎樣的數(shù)量關系,提出恰當?shù)臄?shù)學問題并加以解決.
解決問題
下面是三個學習小組提出的數(shù)學問題,請你解決這些問題.

(1)“奮進”小組提出的問題是:如圖1,當EF與AB相交于點M,EH與BC相交于點N時,求證:EM=EN.
(2)“雄鷹”小組提出的問題是:在(1)的條件下,當AM=CN時,AM與BM有怎樣的數(shù)量關系,說明理由.
(3)“創(chuàng)新”小組提出的問題是;若矩形EFGH繼續(xù)以點E為旋轉(zhuǎn)中心進行逆時針旋轉(zhuǎn),當∠AEF=60°時,請你在圖2中畫出旋轉(zhuǎn)后的示意圖,并求出此時EF將邊BC分成的兩條線段的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果10b=n,那么稱b為n的勞格數(shù),記為b= d(n).

(1)根據(jù)勞格數(shù)的定義,可知d(10)=1,d(102)=2,直接寫出 d(103)的值.

(2)勞格數(shù)有如下運算性質(zhì):若m,n為正數(shù),則d(mn)= d(m)+ d(n);d()= d(m)- d(n).

根據(jù)運算性質(zhì),求,若 ,直接寫出的值.

(3)下表中與數(shù)x對應的勞格數(shù) 有且只有兩個是錯誤的,請找出錯誤的勞格數(shù)并改正.

1.5

3

5

6

8

9

12

27

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)的自變量x滿足 ≤x≤2時,函數(shù)值y滿足 ≤y≤1,則這個函數(shù)可以是(
A.y=
B.y=
C.y=
D.y=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+5經(jīng)過點B(3,9)和A(﹣6,m).

(1)求k,m的值;

(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一條12個單位長度的線段分成三條線段,其中一條線段成為4個單位長度,另兩條線段長都是單位長度的整數(shù)倍.

(1)不同分段得到的三條線段能組成多少個不全等的三角形?用直尺和圓規(guī)作這些三角形(用給定的單位長度,不寫作法,保留作圖痕跡);
(2)求出(1)中所作三角形外接圓的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,10個邊長為1的正方形如圖擺放在平面直角坐標系中,經(jīng)過原點的一條直線l將這10個正方形分成面積相等的兩部分,則該直線l的解析式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線PD垂直平分⊙O的半徑OA于點B,PD交⊙O于點C、D,PE是⊙O的切線,E為切點,連結AE,交CD于點F.
(1)若⊙O的半徑為8,求CD的長;
(2)證明:PE=PF;
(3)若PF=13,sinA= ,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教師運動會中,甲,乙兩組教師參加“兩人背夾球”往返跑比賽,即:每組兩名教師用背部夾著球跑完規(guī)定的路程,若途中球掉下時須撿起并回到掉球處繼續(xù)賽跑,用時少者勝.若距起點的距離用y(米)表示,時間用x(秒)表示.下圖表示兩組教師比賽過程中yx的函數(shù)關系的圖象.根據(jù)圖象,有以下四個推斷:

①乙組教師獲勝

②乙組教師往返用時相差2秒

③甲組教師去時速度為0.5米/秒

④返回時甲組教師與乙組教師的速度比是2:3

其中合理的是( )

A. ①② B. ①③ C. ②④ D. ①④

查看答案和解析>>

同步練習冊答案