【題目】已知點(diǎn)O(0,0),B(2,3),點(diǎn)A在坐標(biāo)軸上,且S△AOB=6.
(1)求滿足條件的點(diǎn)A的坐標(biāo);
(2)點(diǎn)C(﹣3,1),過(guò)O點(diǎn)直線l把三角形BOC分成面積相等的兩部分,交BC于D,則D的坐標(biāo)為 .
【答案】(1)點(diǎn)A的坐標(biāo)為(0,6)、(0,﹣6)、(4,0)、(﹣4,0);(2)
【解析】
(1)分點(diǎn)A在x軸和y軸上,根據(jù)三角形的面積分別求出OA的長(zhǎng),進(jìn)而可得結(jié)果;
(2)根據(jù)題意可得點(diǎn)D是BC的中點(diǎn),然后根據(jù)中點(diǎn)坐標(biāo)公式求解即可.
解:(1)∵點(diǎn)O(0,0),B(2,3),點(diǎn)A在坐標(biāo)軸上,且S△AOB=6,
∴當(dāng)點(diǎn)A在x軸上時(shí),,
∴OA=4,
∴點(diǎn)A的坐標(biāo)為(4,0)或(﹣4,0);
當(dāng)點(diǎn)A在y軸上時(shí),,
∴OA=6,
∴點(diǎn)A的坐標(biāo)為(0,6)或(0,﹣6);
∴點(diǎn)A的坐標(biāo)為(0,6)、(0,﹣6)、(4,0)、(﹣4,0);
(2)∵B(2,3),C(﹣3,1),
過(guò)O點(diǎn)的直線l把△BOC分成面積相等的兩部分,交BC于D,如圖,
∴DC=DB,即D為BC中點(diǎn),
∴點(diǎn)D的坐標(biāo)為(﹣,2).
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將兩塊直角三角形的一條直角邊重合疊放,已知AC=BC= +1,∠D=60°,則兩條斜邊的交點(diǎn)E到直角邊BC的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣1,0),且OC=OB,tan∠ACO= .
(1)求拋物線的解析式;
(2)若點(diǎn)D和點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,直線AD下方的拋物線上有一點(diǎn)P,過(guò)點(diǎn)P作PH⊥AD于點(diǎn)H,作PM平行于y軸交直線AD于點(diǎn)M,交x軸于點(diǎn)E,求△PHM的周長(zhǎng)的最大值;
(3)在(2)的條件下,以點(diǎn)E為端點(diǎn),在直線EP的右側(cè)作一條射線與拋物線交于點(diǎn)N,使得∠NEP為銳角,在線段EB上是否存在點(diǎn)G,使得以E,N,G為頂點(diǎn)的三角形與△AOC相似?如果存在,請(qǐng)求出點(diǎn)G的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過(guò)第三象限,則實(shí)數(shù)b的取值范圍是( )
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BC為半圓的直徑,O為圓心,D是弧AC的中點(diǎn),四邊形ABCD的對(duì)角線AC,BD交于點(diǎn)E,BC= ,CD= ,則sin∠AEB的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為打造書香校園,購(gòu)進(jìn)了甲、乙兩種型號(hào)的新書柜來(lái)放置新買的圖書,甲型號(hào)書柜共花了15000元,乙型號(hào)書柜共花了18000元,乙型號(hào)書柜比甲型號(hào)書柜單價(jià)便宜了300元,購(gòu)買乙型號(hào)書柜的數(shù)量是甲型號(hào)書柜數(shù)量的2倍.求甲、乙型號(hào)書柜各購(gòu)進(jìn)多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于實(shí)數(shù)a,我們規(guī)定:用符號(hào)表示不大于的最大整數(shù),稱為a的根整數(shù),例如:,=3.
(1)仿照以上方法計(jì)算:=______;=_____.
(2)若,寫出滿足題意的x的整數(shù)值______.
如果我們對(duì)a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對(duì)10連續(xù)求根整數(shù)2次 =1,這時(shí)候結(jié)果為1.
(3)對(duì)100連續(xù)求根整數(shù),____次之后結(jié)果為1.
(4)只需進(jìn)行3次連續(xù)求根整數(shù)運(yùn)算后結(jié)果為1的所有正整數(shù)中,最大的是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B,A,D,E在同一直線上,BD =AE, BC∥EF, 要使△ABC≌△DEF則需要添加一個(gè)適當(dāng)?shù)臈l件是______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,則有a2+b2=c2;如圖(2),△ABC為銳角三角形時(shí),小明猜想a2+b2>c2,理由如下:
設(shè)CD=x,在Rt△ADC中,AD2=b2-x2,
在Rt△ADB中,AD2=c2-(a-x)2,
則b2-x2=c2-(a-x)2,所以a2+b2=c2+2ax,
因?yàn)?/span>a>0,x>0,所以2ax>0,所以a2+b2>c2,
所以當(dāng)△ABC為銳角三角形時(shí)a2+b2>c2.
所以小明的猜想是正確的.
(1)請(qǐng)你猜想,當(dāng)△ABC為鈍角三角形時(shí),a2+b2與c2的大小關(guān)系;
(2)證明你猜想的結(jié)論是否正確.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com