【題目】如圖,△ABC 內(nèi)接于⊙O,∠B=60°,CD 是⊙O 的直徑,點 P 是 CD 延長線上的一點且 AP=AC.
(1)求證:PA 是⊙O 的切線;
(2)若,,求⊙O的半徑
【答案】(1)詳見解析;(2)3
【解析】
(1)連接OA,根據(jù)圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,繼而由∠OAP=∠AOC-∠P,可得出OA⊥PA,從而得出結(jié)論;
(2)過點C作CE⊥AB于點E.在Rt△BCE中,∠B=60°,BC=4,于是得到BE=BC=2,CE=,根據(jù)勾股定理得到,于是得到AP=AC=.在Rt△PAO中,解直角三角形即可得到結(jié)論.
(1)證明:連接
∵∠B=60°
∴∠AOC=2∠B=120°
又∵OA=OC
∴∠OAC=∠OC A=30°
又∵AP=AC
∴∠P=∠ ACP=30°
∴∠OAP=∠A OC-∠P =90°
∴OA⊥PA
∴PA是圓 O 的切線;
(2)解:過點C作CE⊥ AB于點E.
在 Rt△BCE 中,∠B= 60°,
BC =4,
∴
∴
∴在 Rt△ACE 中, ,
∴
∴在 Rt△PAO 中,OA=3,
∴⊙O的半徑為 3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,函數(shù)的圖象記為,函數(shù)的圖象記為,其中為常數(shù).圖象,合起來得到的圖象記為.
(1)當(dāng)時,
①點在圖象上,求的值;
②求圖象與軸的交點坐標(biāo);
(2)當(dāng)圖象的最低點到軸距離為時,求的值;
(3)已知線段的兩個端點坐標(biāo)分別為,,當(dāng)圖象與線段有兩個交點時,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A1B1C1,使△A1B1C1與△ABC位似,且位似比為2:1,點C1的坐標(biāo)是_______;
(2)△A1B1C1的面積是_______平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”倡議提出五年多來,交通、通信、能源等各項相關(guān)建設(shè)取得積極進(jìn)展,也為增進(jìn)各國民眾福祉提供了新的發(fā)展機(jī)遇.下圖是2017年“一年一路”沿線部分國家的通信設(shè)施現(xiàn)狀統(tǒng)計圖.
根據(jù)統(tǒng)計圖提供的信息,下列推斷合理的是( ).
A.互聯(lián)網(wǎng)服務(wù)器擁有個數(shù)最多的國家是阿聯(lián)酋
B.寬帶用戶普及率的中位數(shù)是11.05%
C.有8個國家的電話普及率能夠達(dá)到平均每人1部
D.只有俄羅斯的三項指標(biāo)均超過了相應(yīng)的中位數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中 xOy 中,對于⊙C及⊙C內(nèi)一點 P,給出如下定義:若存在過點 P 的直線 l,使得它與⊙C 相交所截得的弦長為,則稱點 P 為⊙C的“k-近內(nèi)點”.
(1)已知⊙O的半徑為 4,
①在點中,⊙O的“4-近內(nèi)點”是______________;
②點 P 在直線y=x上,若點 P 為⊙O的“4-近內(nèi)點”,則點 P 的縱坐標(biāo)y的取值范圍是____________;
(2)⊙C的圓心為(-1,0),半徑為 3,直線x 軸,y 軸分別交于 M,N,若線段 MN 上存在⊙C的 “2 -近內(nèi)點”,則 b 的取值范圍是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是的直徑,點P在BA的延長線上,PD切于點D,過點B作,交PD的延長線于點C,連接AD并延長,交BE于點E.
(Ⅰ)求證:AB=BE;
(Ⅱ)連結(jié)OC,如果PD=2,∠ABC=60°,求OC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=6,在線段BC上任取一點P,連接DP,作射線PE⊥DP,PE與直線AB交于點E.
(1)試確定當(dāng)CP=3時,點E的位置;
(2)若設(shè)CP=x,BE=y,試寫出y關(guān)于自變量x的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com