【題目】用適當(dāng)?shù)姆椒ń夥匠蹋簒2﹣6x+9=(5﹣2x)2

【答案】解:∵x2﹣6x+9=(5﹣2x)2 ,
∴(x﹣3)2=(5﹣2x)2
∴(x﹣3)2﹣(5﹣2x)2=0,
∴[(x﹣3)+(5﹣2x)][(x﹣3)﹣(5﹣2x)]=0,
∴(x﹣3+5﹣2x)(x﹣3﹣5+2x)=0,
∴(﹣x+2)(3x﹣8)=0,
∴﹣x+2=0或3x﹣8=0,
∴x1=2,x2=
【解析】先把x2﹣6x+9=(5﹣2x)2轉(zhuǎn)化為(x﹣3)2﹣(5﹣2x)2=0,然后因式分解得到(﹣x+2)(3x﹣8)=0,解兩個(gè)一元一次方程即可.
【考點(diǎn)精析】通過靈活運(yùn)用因式分解法,掌握已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD , ADBC , ABBC , AD=1,AB=2,BC=3,PAB邊上的一動點(diǎn),以PD , PC為邊作平行四邊形PCQD , 則對角線PQ的長的最小值是(  )
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,直線,MN經(jīng)過點(diǎn)C,且ADMN于點(diǎn)D,BEMN于點(diǎn)E.

(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到如圖1的位置時(shí),求證:DE=AD+BE;

(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到如圖2的位置時(shí),求證:DE=AD﹣BE;

(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到如圖3的位置時(shí),線段DE、AD、BE之間又有什么樣的數(shù)量關(guān)系?請你直接寫出這個(gè)數(shù)量關(guān)系,不要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)請按下列要求畫圖:
①將△ABC先向右平移4個(gè)單位長度、再向上平移2個(gè)單位長度,得到△A1B1C1 , 畫出△A1B1C1
②△A2B2C2與△ABC關(guān)于原點(diǎn)O成中心對稱,畫出△A2B2C2
(2)在(1)中所得的△A1B1C1和△A2B2C2關(guān)于點(diǎn)M成中心對稱,請直接寫出對稱中心M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是⊙O的直徑,點(diǎn)A在⊙O上,AD⊥BC,垂足為D,弧AE等于弧AB,BE分別交AD、AC于點(diǎn)F、G.
(1)判斷△FAG的形狀,并說明理由;
(2)若點(diǎn)E和點(diǎn)A在BC的兩側(cè),BE、AC的延長線交于點(diǎn)G,AD的延長線交BE于點(diǎn)F,其余條件不變,(1)中的結(jié)論還成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線 y=x+2 與兩坐標(biāo)軸分別交于A、B 兩點(diǎn),點(diǎn) C OB 的中點(diǎn),D、E 別是直線 AB、y 軸上的動點(diǎn),則△CDE 周長的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點(diǎn)坐標(biāo);
(3)設(shè)(1)中的拋物線上有一個(gè)動點(diǎn)P,當(dāng)點(diǎn)P在該拋物線上滑動到什么位置時(shí),滿足SPAB=8,并求出此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點(diǎn),且DE=BF,連接AE、AF、EF.
(1)試判斷△AEF的形狀,并說明理由;
(2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心點(diǎn),按順時(shí)針方向旋轉(zhuǎn)度得到;
(3)若BC=8,則四邊形AECF的面積為 . (直接寫結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設(shè)豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圖案中三條彩條所占面積是圖案面積的 ,求橫、豎彩條的寬度.

查看答案和解析>>

同步練習(xí)冊答案