若將邊長(zhǎng)為1的5個(gè)正方形拼成圖1的形狀,然后將圖1按斜線剪開(kāi),再將剪開(kāi)后的圖形拼成圖2所示的正方形,那么這個(gè)正方形的邊長(zhǎng)是________.


分析:由于每個(gè)小正方形面積為1,所以新形成的圖形面積即可求出,直接開(kāi)平方求解.
解答:根據(jù)圖形可知,
這個(gè)正方形的面積是5,
所以它的邊長(zhǎng)是
點(diǎn)評(píng):本題考查了不規(guī)則圖形的面積的求解方法:割補(bǔ)法.補(bǔ)成規(guī)則的圖形后的面積還是和原來(lái)的面積是相等的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將邊長(zhǎng)為8的等邊△AOB置于平面直角坐標(biāo)系中,點(diǎn)A在x軸正半軸上,過(guò)點(diǎn)O作OC⊥AB于點(diǎn)C,將△OAC繞著原點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到△OBD,這時(shí),點(diǎn)D恰好落在y軸上.若動(dòng)點(diǎn)E從原點(diǎn)O出發(fā),沿線段OC向終點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)D出發(fā),沿線段DO向終點(diǎn)O運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度均為每秒1個(gè)單位長(zhǎng)度.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)請(qǐng)直接寫(xiě)出點(diǎn)A、點(diǎn)D的坐標(biāo);
(2)當(dāng)△OEF的面積為
3
3
4
時(shí),求t的值;
(3)設(shè)EF與OB相交于點(diǎn)P,當(dāng)t為何值時(shí),△OPF與△OBD相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將邊長(zhǎng)為4的正方形置于平面直角坐標(biāo)系第一象限,使AB邊落在x軸正半軸上,且A點(diǎn)精英家教網(wǎng)的坐標(biāo)是(1,0).
(1)直線y=
4
3
x-
8
3
經(jīng)過(guò)點(diǎn)C,且與x軸交于點(diǎn)E,求四邊形AECD的面積;
(2)若直線l經(jīng)過(guò)點(diǎn)E,且將正方形ABCD分成面積相等的兩部分,求直線l的解析式;
(3)若直線l1經(jīng)過(guò)點(diǎn)F(-
3
2
,0
)且與直線y=3x平行.將(2)中直線l沿著y軸向上平移1個(gè)單位,交x軸于點(diǎn)M,交直線l1于點(diǎn)N,求△NMF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,將邊長(zhǎng)為4的正方形置于平面直角坐標(biāo)系第一象限,使AB邊落在x軸正半軸上,且A點(diǎn)的坐標(biāo)是(1,0).
(1)直線數(shù)學(xué)公式經(jīng)過(guò)點(diǎn)C,且與x軸交于點(diǎn)E,求四邊形AECD的面積;
(2)若直線l經(jīng)過(guò)點(diǎn)E,且將正方形ABCD分成面積相等的兩部分,求直線l的解析式;
(3)若直線l1經(jīng)過(guò)點(diǎn)F(數(shù)學(xué)公式)且與直線y=3x平行.將(2)中直線l沿著y軸向上平移1個(gè)單位,交x軸于點(diǎn)M,交直線l1于點(diǎn)N,求△NMF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省無(wú)錫市惠山北片九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

翻轉(zhuǎn)類(lèi)的計(jì)算問(wèn)題在全國(guó)各地的中考試卷中出現(xiàn)的頻率很大,因此初三(5)班聰慧的小菲同學(xué)結(jié)合2011年蘇州市數(shù)學(xué)中考卷的倒數(shù)第二題對(duì)這類(lèi)問(wèn)題進(jìn)行了專(zhuān)門(mén)的研究。你能和小菲一起解決下列各問(wèn)題嗎?(以下各問(wèn)只要求寫(xiě)出必要的計(jì)算過(guò)程和簡(jiǎn)潔的文字說(shuō)明即可。)

1)如圖,小菲同學(xué)把一個(gè)邊長(zhǎng)為1的正三角形紙片(即OAB)放在直線l1上,OA邊與直線l1重合,然后將三角形紙片向右翻轉(zhuǎn)一周回到初始位置,求頂點(diǎn)O所經(jīng)過(guò)的路程;并求頂點(diǎn)O所經(jīng)過(guò)的路線;

2)小菲進(jìn)行類(lèi)比研究:如圖,她把邊長(zhǎng)為1的正方形紙片OABC放在直線l2上,OA邊與直線l2重合,然后將正方形紙片向右翻轉(zhuǎn)若干次.她提出了如下問(wèn)題:

問(wèn)題:若正方形紙片OABC接上述方法翻轉(zhuǎn)一周回到初始位置,求頂點(diǎn)O經(jīng)過(guò)的路程;

問(wèn)題:正方形紙片OABC按上述方法經(jīng)過(guò)多少次旋轉(zhuǎn),頂點(diǎn)O經(jīng)過(guò)的路程是

3小菲又進(jìn)行了進(jìn)一步的拓展研究,若把這個(gè)正三角形的一邊OA與這個(gè)正方形的一邊OA重合(如圖3),然后讓這個(gè)正三角形在正方形上翻轉(zhuǎn),直到正三角形第一次回到初始位置(即OAB的相對(duì)位置和初始時(shí)一樣),求頂點(diǎn)O所經(jīng)過(guò)的總路程。

若把邊長(zhǎng)為1的正方形OABC放在邊長(zhǎng)為1的正五邊形OABCD上翻轉(zhuǎn)(如圖),直到正方形第一次回到初始位置,求頂點(diǎn)O所經(jīng)過(guò)的總路程。

4)規(guī)律總結(jié),邊長(zhǎng)相等的兩個(gè)正多邊形,其中一個(gè)在另一個(gè)上翻轉(zhuǎn),當(dāng)翻轉(zhuǎn)后第一次回到初始位置時(shí),該正多邊形翻轉(zhuǎn)的次數(shù)一定是兩正多邊形邊數(shù)的___________

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將邊長(zhǎng)為8的等邊置于平面直角坐標(biāo)系中,點(diǎn)軸正半軸上,過(guò)點(diǎn)于點(diǎn),將繞著原點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,這時(shí),點(diǎn)恰好落在軸上.若動(dòng)點(diǎn)從原點(diǎn)出發(fā),沿線段向終點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段向終點(diǎn)運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度均為每秒1個(gè)單位長(zhǎng)度.設(shè)運(yùn)動(dòng)的時(shí)間為秒.

(1)請(qǐng)直接寫(xiě)出點(diǎn)、點(diǎn)的坐標(biāo);

(2)當(dāng)的面積為時(shí),求的值;

(3)設(shè)相交于點(diǎn),當(dāng)為何值時(shí),相似?

查看答案和解析>>

同步練習(xí)冊(cè)答案